The basal level of the plant defense hormone jasmonate (JA) in unstressed leaves is low, but wounding causes its near instantaneous increase. How JA biosynthesis is initiated is uncertain, but the lipolysis step that generates fatty acid precursors is generally considered to be the first step. Here, we used a series of physiological, pharmacological, genetic, and kinetic analyses of gene expression and hormone profiling to demonstrate that the early spiking of JA upon wounding does not depend on the expression of JA biosynthetic genes in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPlants recycle non-activated immune receptors to maintain a functional immune system. The Arabidopsis immune receptor kinase FLAGELLIN-SENSING 2 (FLS2) recognizes bacterial flagellin. However, the molecular mechanisms by which non-activated FLS2 and other non-activated plant PRRs are recycled remain not well understood.
View Article and Find Full Text PDFUridine-rich small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play essential roles in splicing. The biogenesis of the majority of snRNAs involves 3' end endonucleolytic cleavage of the nascent transcript from the elongating DNA-dependent RNA ploymerase II. However, the protein factors responsible for this process remain elusive in plants.
View Article and Find Full Text PDFSphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point.
View Article and Find Full Text PDFSphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death.
View Article and Find Full Text PDFAlthough sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves.
View Article and Find Full Text PDFMaintenance of sphingolipid homeostasis is critical for cell growth and programmed cell death (PCD). Serine palmitoyltransferase (SPT), composed of LCB1 and LCB2 subunits, catalyzes the primary regulatory point for sphingolipid synthesis. Small subunits of SPT (ssSPT) that strongly stimulate SPT activity have been identified in mammals, but the role of ssSPT in eukaryotic cells is unclear.
View Article and Find Full Text PDF