Publications by authors named "Atheir I Abbas"

Article Synopsis
  • Working memory (WM) is essential for temporarily holding information to guide future actions and relies on the collaboration of different areas in the prefrontal cortex (PFC).
  • This study investigates three specific regions of the medial PFC in mice while they perform a non-match-to-position WM task, using electrophysiological recordings.
  • Findings show that the supplementary motor area is active during task transitions, the dorsomedial PFC maintains specific information during delays, and the ventromedial PFC is primarily responsive to rewards, highlighting the functional specialization of these mPFC subregions in WM processes.
View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory.

View Article and Find Full Text PDF

Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans.

View Article and Find Full Text PDF

Administration or consumption of classic psychedelics (CPs) leads to profound changes in experience which are often described as highly novel and meaningful. They have shown substantial promise in treating depressive symptoms and may be therapeutic in other situations. Although research suggests that the therapeutic response is correlated with the intensity of the experience, the neural circuit basis for the alterations in experience caused by CPs requires further study.

View Article and Find Full Text PDF

Working memory (WM) is a critical cognitive function allowing recent information to be temporarily held in mind to inform future action. This process depends on coordination between key subregions in prefrontal cortex (PFC) and other connected brain areas. However, few studies have examined the degree of functional specialization between these subregions throughout the phases of WM using electrophysiological recordings in freely-moving animals, particularly mice.

View Article and Find Full Text PDF

The benzimidazole opioids (substituted nitazenes) are highly potent opiod receptor (MOR) agonists with heroin- or fentanyl-like effects. These compounds have caused hospitalizations and fatal overdoses. We characterized the in vitro pharmacology and structure-activity relationships of 19 nitazenes with substitutions at three positions of the benzimidazole core.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory.

View Article and Find Full Text PDF

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ.

View Article and Find Full Text PDF

Novel psychoactive substances, including synthetic substituted tryptamines, represent a potential public health threat. Additionally, some substituted tryptamines are being studied under medical guidance as potential treatments of psychiatric disorders. Characterizing the basic pharmacology of substituted tryptamines will aid in understanding differences in potential for harm or therapeutic use.

View Article and Find Full Text PDF

Alterations in glutamatergic function are well established in schizophrenia (Sz), but new treatment development is hampered by the lack of translational pathophysiological and target engagement biomarkers as well as by the lack of animal models that recapitulate the pathophysiological features of Sz. Here, we evaluated the rodent auditory steady state response (ASSR) and long-latency auditory event-related potential (aERP) as potential translational markers. These biomarkers were assessed for their sensitivity to both the N-methyl-d-aspartate receptor (NMDAR) antagonist phencyclidine (PCP) and to knock-out (KO) of Serine Racemase (SR), which is known to lead to Sz-like alterations in function of parvalbumin (PV)-type cortical interneurons.

View Article and Find Full Text PDF

Decreased pleasure-seeking (anhedonia) forms a core symptom of depression. Stressful experiences precipitate depression and disrupt reward-seeking, but it remains unclear how stress causes anhedonia. We recorded simultaneous neural activity across limbic brain areas as mice underwent stress and discovered a stress-induced 4 Hz oscillation in the nucleus accumbens (NAc) that predicts the degree of subsequent blunted reward-seeking.

View Article and Find Full Text PDF

The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders. Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC) and may prime hippocampal-prefrontal circuitry for subsequent learning-associated plasticity.

View Article and Find Full Text PDF

New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify similarity of effects across preclinical and clinical intervention. Traditional "time-domain" event-related potentials (ERP) have been used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and human studies.

View Article and Find Full Text PDF

Decreased hippocampal-prefrontal synchrony may mediate cognitive deficits in schizophrenia, but it remains unclear which cells orchestrate this long-range synchrony. Parvalbumin (PV)- and somatostatin (SOM)-expressing interneurons show histological abnormalities in individuals with schizophrenia and are hypothesized to regulate oscillatory synchrony within the prefrontal cortex. To examine the relationship between interneuron function, long-range hippocampal-prefrontal synchrony, and cognition, we optogenetically inhibited SOM and PV neurons in the medial prefrontal cortex (mPFC) of mice performing a spatial working memory task while simultaneously recording neural activity in the mPFC and the hippocampus (HPC).

View Article and Find Full Text PDF

In the version of this article initially published, the title of ref. 45 was given as "Sustaining cortical representations by a content-free thalamic amplifier." The correct title is "Thalamic amplification of cortical connectivity sustains attentional control.

View Article and Find Full Text PDF

Historically, preclinical stress studies have often omitted female subjects, despite evidence that women have higher rates of anxiety and depression. In rodents, many stress susceptibility and resilience studies have focused on males as one commonly used paradigm-chronic social defeat stress-has proven challenging to implement in females. We report a new version of the social defeat paradigm that works in female mice.

View Article and Find Full Text PDF

The mediodorsal thalamus (MD) shares reciprocal connectivity with the prefrontal cortex (PFC), and decreased MD-PFC connectivity is observed in schizophrenia patients. Patients also display cognitive deficits including impairments in working memory, but a mechanistic link between thalamo-prefrontal circuit function and working memory is missing. Using pathway-specific inhibition, we found directional interactions between mouse MD and medial PFC (mPFC), with MD-to-mPFC supporting working memory maintenance and mPFC-to-MD supporting subsequent choice.

View Article and Find Full Text PDF

Cognitive deficits are central to schizophrenia, but the underlying mechanisms still remain unclear. Imaging studies performed in patients point to decreased activity in the mediodorsal thalamus (MD) and reduced functional connectivity between the MD and prefrontal cortex (PFC) as candidate mechanisms. However, a causal link is still missing.

View Article and Find Full Text PDF

Clozapine, by virtue of its absence of extrapyramidal side effects and greater efficacy, revolutionized the treatment of schizophrenia, although the mechanisms underlying this exceptional activity remain controversial. Combining an unbiased cheminformatics and physical screening approach, we evaluated clozapine's activity at >2350 distinct molecular targets. Clozapine, and the closely related atypical antipsychotic drug olanzapine, interacted potently with a unique spectrum of molecular targets.

View Article and Find Full Text PDF

RNA transcripts encoding the 2C-subtype of serotonin (5HT(2C)) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT(2C) editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic characteristics of Prader-Willi syndrome (PWS) including a failure to thrive, decreased somatic growth, neonatal muscular hypotonia, and reduced food consumption followed by post-weaning hyperphagia.

View Article and Find Full Text PDF

RNA editing is a post-transcriptional modification of pre-mRNA that results in increased diversity in transcriptomes and proteomes. It occurs in a wide variety of eukaryotic organisms and in some viruses. One of the most common forms of pre-mRNA editing is A-to-I editing, in which adenosine is deaminated to inosine, which is read as guanosine during translation.

View Article and Find Full Text PDF

Although drugs are intended to be selective, at least some bind to several physiological targets, explaining side effects and efficacy. Because many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here we compared 3,665 US Food and Drug Administration (FDA)-approved and investigational drugs against hundreds of targets, defining each target by its ligands.

View Article and Find Full Text PDF

Examining the behavioral consequences of selective CNS neuronal activation is a powerful tool for elucidating mammalian brain function in health and disease. Newly developed genetic, pharmacological, and optical tools allow activation of neurons with exquisite spatiotemporal resolution; however, the inaccessibility to light of widely distributed neuronal populations and the invasiveness required for activation by light or infused ligands limit the utility of these methods. To overcome these barriers, we created transgenic mice expressing an evolved G protein-coupled receptor (hM3Dq) selectively activated by the pharmacologically inert, orally bioavailable drug clozapine-N-oxide (CNO).

View Article and Find Full Text PDF

Here, we report that postsynaptic density protein of 95 kDa (PSD-95), a postsynaptic density scaffolding protein, classically conceptualized as being essential for the regulation of ionotropic glutamatergic signaling at the postsynaptic membrane, plays an unanticipated and essential role in mediating the actions of hallucinogens and atypical antipsychotic drugs at 5-HT(2A) and 5-HT(2C) serotonergic G-protein-coupled receptors. We show that PSD-95 is crucial for normal 5-HT(2A) and 5-HT(2C) expression in vivo and that PSD-95 maintains normal receptor expression by promoting apical dendritic targeting and stabilizing receptor turnover in vivo. Significantly, 5-HT(2A)- and 5-HT(2C)-mediated downstream signaling is impaired in PSD-95(null) mice, and the 5-HT(2A)-mediated head-twitch response is abnormal.

View Article and Find Full Text PDF