Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, and is usually accompanied by dysbiosis in the gut microbiome, a factor that contributes to disease progression. Excessive production of reactive oxygen species (ROS) because of gut microbiome dysbiosis-one of the hallmark features of IBD-promotes chronic inflammation and facilitates the transformation of normal cells into senescent cells. Cellular senescence is associated with the development of various chronic and age-related diseases.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC.
View Article and Find Full Text PDFMedicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical manufacturing and necessitates a time-consuming, trial-and-error adaptation process.
View Article and Find Full Text PDFThe production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs.
View Article and Find Full Text PDFThe incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence.
View Article and Find Full Text PDFInkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients.
View Article and Find Full Text PDFInfliximab is a monoclonal antibody that plays an important role in the management and treatment of chronic inflammatory bowel diseases (IBD). Due to its macromolecular structure, its delivery through the oral route is challenging, limiting its administration to only via the parenteral route. The rectal route offers an alternative way for administering infliximab, allowing it to be localised at the disease site and circumventing its passage across the alimentary canal and thus, maintaining its integrity and bioactivity.
View Article and Find Full Text PDFAcute severe ulcerative colitis (ASUC) is a growing health burden that often requires treatment with multiple therapeutic agents. As inflammation is localised in the rectum and colon, local drug delivery using suppositories could improve therapeutic outcomes. Three-dimensional (3D) printing is a novel manufacturing tool that permits the combination of multiple drugs in personalised dosage forms, created based on each patient's disease condition.
View Article and Find Full Text PDFThree-dimensional (3D) printing is drastically redefining medicine production, offering digital precision and personalized design opportunities. One emerging 3D printing technology is selective laser sintering (SLS), which is garnering attention for its high precision, and compatibility with a wide range of pharmaceutical materials, including low-solubility compounds. However, the full potential of SLS for medicines is yet to be realized, requiring expertise and considerable time-consuming and resource-intensive trial-and-error research.
View Article and Find Full Text PDFColonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design.
View Article and Find Full Text PDFSince their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences.
View Article and Find Full Text PDFDigitalisation of the healthcare sector promises to revolutionise patient healthcare globally. From the different technologies, virtual tools including artificial intelligence, blockchain, virtual, and augmented reality, to name but a few, are providing significant benefits to patients and the pharmaceutical sector alike, ranging from improving access to clinicians and medicines, as well as improving real-time diagnoses and treatments. Indeed, it is envisioned that such technologies will communicate together in real-time, as well as with their physical counterparts, to create a large-scale, cyber healthcare system.
View Article and Find Full Text PDFAdv Drug Deliv Rev
February 2022
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release).
View Article and Find Full Text PDF3D printing is a manufacturing technique that is transforming numerous industrial sectors, particularly where it is key tool in the development and fabrication of medicinees that are personalised to the individual needs of patients. Most 3D printers are relatively large, require trained operators and must be located in a pharmaceutical setting to manufacture dosage forms. In order to realise fully the potential of point-of-care manufacturing of medicines, portable printers that are easy to operate are required.
View Article and Find Full Text PDFAdv Drug Deliv Rev
November 2021
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway.
View Article and Find Full Text PDFPowder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants.
View Article and Find Full Text PDFThree-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided.
View Article and Find Full Text PDFPharmaceutical three-dimensional (3D) printing is a modern fabrication process with the potential to create bespoke drug products of virtually any shape and size from a computer-aided design model. Selective laser sintering (SLS) 3D printing combines the benefits of high printing precision and capability, enabling the manufacture of medicines with unique engineering and functional properties. This article reviews the current state-of-the-art in SLS 3D printing, including the main principles underpinning this technology, and highlights the diverse selection of materials and essential parameters that influence printing.
View Article and Find Full Text PDFVisual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on their surface, enabling patients to identify medications when taken out of their original packaging.
View Article and Find Full Text PDFIn the past decade, prescriptions for opioid medicines have been exponentially increasing, instigating opioid abuse as a global health crisis associated with high morbidity and mortality. In particular, diversion from the intended mode of opioid administration, such as injecting and snorting the opioid, is a major problem that contributes to this epidemic. In light of this, novel formulation strategies are needed to support efforts in reducing the prevalence and risks of opioid abuse.
View Article and Find Full Text PDFExpert Opin Drug Deliv
October 2019
: Three-dimensional (3D) printing is a relatively new, rapid manufacturing technology that has found promising applications in the drug delivery and medical sectors. Arguably, never before has the healthcare industry experienced such a transformative technology. This review aims to discuss the state of the art of 3D printing technology in healthcare and drug delivery.
View Article and Find Full Text PDFThree-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we developed a novel stereolithographic (SLA) 3D printing method that, for the first time, can be used to fabricate multi-layer constructs (polypills) with variable drug content and/or shape.
View Article and Find Full Text PDFPrinting technologies have been forecast to initiate a new era of personalised medicine in pharmaceuticals. To facilitate integration, a non-destructive and robust method of product authenticity is required. This study reports, for the first time, the interface between 3D printing and 2D inkjet printing technologies in order to fabricate a drug-loaded 3D printed tablet (printlet) with a unique track-and-trace measure in a single step process.
View Article and Find Full Text PDFSelective laser sintering (SLS) is a single-step three-dimensional printing (3DP) process that can be leveraged to engineer a wide array of drug delivery systems. The aim of this work was to utilise SLS 3DP, for the first time, to produce small oral dosage forms with modified release properties. As such, paracetamol-loaded 3D printed multiparticulates, termed miniprintlets, were fabricated in 1 mm and 2 mm diameters.
View Article and Find Full Text PDFThree-dimensional printing (3DP) is a highly disruptive technology with the potential to change the way pharmaceuticals are designed, prescribed and produced. Owing to its low cost, diversity, portability and simplicity, fused deposition modeling (FDM) is well suited to a multitude of pharmaceutical applications in digital health. Favourably, through the combination of digital and genomic technologies, FDM enables the remote fabrication of drug delivery systems from 3D models having unique shapes, sizes and dosages, enabling greater control over the release characteristics and hence bioavailability of medications.
View Article and Find Full Text PDF