Publications by authors named "Athar Y Khan"

This research highlights the facile green synthesis of silver nanoparticles (AgNPs) using Phoenix dactylifera seed extracts and its photocatalytic application for the degradation of toxic dyes. The AgNPs synthesis was confirmed by the appearance of its representative absorption peak at 416 nm in UV-visible absorption spectroscopy. Moreover, the reduction of silver ions to Ag was justified through Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Emergence of deep eutectic solvents as potential replacements for volatile organic solvents has attracted interest of the scientific community in diverse fields of applications. Compared to ionic liquids, which exhibit similarity in many respects with this new class of green solvents, deep eutectic solvents (DESs) show low toxicity, and are easy to prepare from cheap and abundantly available starting materials. Knowledge of physicochemical properties of DESs is a prerequisite for their safe applications in technological fields and to understand the nature of interactions present in these systems.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are considered to play an important role in green chemistry and other technological fields as an alternative to organic solvents. The present study reports measurements of density (ρ), speed of sound (u), dynamic viscosity (η), and electrical conductivity (κ) and investigates physicochemical properties of choline chloride/acetic acid (ChCl/AcA DES) and its binary mixtures with dimethyl sulfoxide (DMSO) over the entire composition and temperature (298.15-353.

View Article and Find Full Text PDF

Highly stable gold and silver nanoparticles were synthesized by use of an arabinoglucan from Lallemantia royleana seeds without additional use of reducing or stabilizing agents. The mechanism involved the reduction potential of the hemicellulose as verified by cyclic voltammetry. The arabinoglucan used was substantially free from ferulic acid and phenolic content, suggesting the inherent reducing potential of arabinoglucan for gold and silver ions.

View Article and Find Full Text PDF

Three structurally related natural flavonoids (FlOH), quercetin (Q), rutin (R) and morin (M), were investigated by cyclic voltammetry to probe their interactions with hazardous 1,4-dinitrobenzene (1,4-DNB) using a glassy carbon electrode. Scavenging of 1,4-DNB by FlOH was inferred from a positive shift in reduction potential, decrease in anodic peak current, and irreversible electrochemical behavior of 1,4-DNB on increasing the flavonoid concentration. The homogeneous bi-molecular rate constant (k2) was determined using the Nicholson-Shain equation and found to be higher for the dianion.

View Article and Find Full Text PDF