Publications by authors named "Athanasios Ziogas"

Trained immunity induces antigen-agnostic enhancement of host defense and protection against secondary infections, but inappropriate activation can contribute to the pathophysiology of inflammatory diseases. Tight regulation of trained immunity is therefore needed to avoid pathology, but little is known about the endogenous processes that modulate it. Here, we investigated the potential of IL-10, a prototypical anti-inflammatory cytokine, to inhibit trained immunity.

View Article and Find Full Text PDF

Objectives: IL-1α/β and TNF are closely linked to the pathology of severe COVID-19 and sepsis. The soluble forms of their receptors, functioning as decoy receptors, exhibit inhibitory effects. However, little is known about their regulation in severe bacterial and viral infections, which we aimed to investigate in this study.

View Article and Find Full Text PDF

Dysregulation and hyperactivation of innate immune responses can lead to the onset of systemic autoinflammatory diseases. Monogenic autoinflammatory diseases are caused by inborn genetic errors and based on molecular mechanisms at play, can be divided into inflammasomopathies, interferonopathies, relopathies, protein misfolding, and endogenous antagonist deficiencies. On the other hand, more common autoinflammatory diseases are multifactorial, with both genetic and non-genetic factors playing an important role.

View Article and Find Full Text PDF

Introduction: Trained Immunity represents a novel revolutionary concept of the immunological response involving innate immune cells. Bisphenol A is a well-known endocrine disrupter, widely disseminated worldwide and accumulated in the human body. Due to the increased interest regarding the effects of plastic-derived compounds on the immune system, our purpose was to explore whether BPA was able to induce trained immunity in human primary monocytes using low environmental concentrations.

View Article and Find Full Text PDF

Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes.

View Article and Find Full Text PDF
Article Synopsis
  • * While trained immunity can boost resistance to diseases, it can also lead to problems like weakened immune responses during severe infections or contribute to autoimmune and inflammatory diseases if not properly regulated.
  • * The review discusses the mechanisms behind trained immunity and suggests that it could be a key focus for developing new vaccines and therapies, particularly in cancer treatments and managing inflammatory disorders.
View Article and Find Full Text PDF

Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.

Objective: We combined functional immunological assays and an omics-based approach to investigate the and effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.

View Article and Find Full Text PDF

Trained immunity is a long-term increase in responsiveness of innate immune cells, induced by certain infections and vaccines. During the last 3 years of the COVID-19 pandemic, vaccines that induce trained immunity, such as BCG, MMR, OPV, and others, have been investigated for their capacity to protect against COVID-19. Further, trained immunity-inducing vaccines have been shown to improve B and T cell responsiveness to both mRNA- and adenovirus-based anti-COVID-19 vaccines.

View Article and Find Full Text PDF

Objective: Trained immunity (TI) is a de facto memory program of innate immune cells, characterized by immunometabolic and epigenetic changes sustaining enhanced production of cytokines. TI evolved as a protective mechanism against infections; however, inappropriate activation can cause detrimental inflammation and might be implicated in the pathogenesis of chronic inflammatory diseases. In this study, we investigated the role of TI in the pathogenesis of giant cell arteritis (GCA), a large-vessel vasculitis characterized by aberrant macrophage activation and excess cytokine production.

View Article and Find Full Text PDF

The innate immune system is able to build memory-like features in response to certain infections or vaccines, resulting in enhanced responsiveness upon (re)challenge with the same or an unrelated pathogen, a phenomenon termed 'trained immunity'. Compared with antigen-dependent adaptive immune responses triggered by classical vaccines against specific pathogens, trained immunity-related vaccines induce enhanced innate immune responses against unrelated pathogens and provide 'heterologous protection'. Here, we discuss the heterologous effects of vaccines against infections and detail the latest insights into the cellular and molecular mechanisms mediating trained immunity.

View Article and Find Full Text PDF

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling.

View Article and Find Full Text PDF

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with β-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth.

View Article and Find Full Text PDF

Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner.

View Article and Find Full Text PDF

Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression.

View Article and Find Full Text PDF

Objective- Pathological angiogenesis, such as exuberant retinal neovascularization during proliferative retinopathies, involves endothelial responses to ischemia/hypoxia and oxidative stress. Autophagy is a clearance system enabling bulk degradation of intracellular components and is implicated in cellular adaptation to stressful conditions. Here, we addressed the role of the ATG5 (autophagy-related protein 5) in endothelial cells in the context of pathological ischemia-related neovascularization in the murine model of retinopathy of prematurity.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation.

View Article and Find Full Text PDF

Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function.

View Article and Find Full Text PDF

Del-1 is an endothelial cell-secreted anti-inflammatory protein. In humans and mice, Del-1 expression is inversely related to that of IL-17, which inhibits Del-1 through hitherto unidentified mechanism(s). Here we show that IL-17 downregulates human endothelial cell expression of Del-1 by targeting a critical transcription factor, C/EBPβ.

View Article and Find Full Text PDF

Objective: Endothelial cell activation by tumor necrosis factor (TNF) and associated leukocyte infiltration are hallmarks of vasculitis. The aim of this study was to investigate the potential role of the cellular stress-associated endothelial X-box binding protein 1 (XBP-1) transcription factor in TNF-induced endothelial cell inflammation and vasculitis.

Methods: Mice with an endothelial cell-specific XBP-1 deficiency were used in a modified local Shwartzman reaction (LSR) model of TNF-induced small vessel vasculitis.

View Article and Find Full Text PDF

This study aimed to assess the effect of mofetil mycophenolate (MMF), an inhibitor of lymphocyte proliferation, on lung function and skin in patients with systemic sclerosis (SSc)-associated interstitial lung disease (SSc-ILD). In this retrospective study, we reviewed the medical files of 10 patients with SSc-ILD (eight females, 10 patients with diffuse SSc; mean age, 59.7 +/- 12.

View Article and Find Full Text PDF

Background: The association between systemic sclerosis and pulmonary arterial hypertension (PAH) is well recognized. Vascular endothelial growth factor (VEGF) has been reported to play an important role in pulmonary hypertension. The aim of the present study was to examine the relationship between systolic pulmonary artery pressure, clinical and functional manifestations of the disease and serum VEGF levels in systemic sclerosis.

View Article and Find Full Text PDF

Background: Anti-cyclic citrullinated peptide (anti-CCP) antibodies have been of diagnostic value in Northern European Caucasian patients with rheumatoid arthritis (RA). In these populations, anti-CCP antibodies are associated with the HLA-DRB1 shared epitope. We assessed the diagnostic value of anti-CCP antibodies in Greek patients with RA where the HLA shared epitope was reported in a minority of patients.

View Article and Find Full Text PDF