Publications by authors named "Athanasios Smponias"

We consider a hybrid nanostructure composed of a semiconductor quantum dot placed near a spherical metallic nanoparticle, and study the effect of the nanoparticle on the population transferral from the ground to the biexciton state of the quantum dot, when using linearly chirped Gaussian pulses. For various values of the system parameters (biexciton energy shift, pulse area and chirp, interparticle distance), we calculate the final population of the biexciton state by performing numerical simulations of the non-linear density matrix equations which describe the coupled system, as well as its interaction with the applied electromagnetic field. We find that for relatively large values of the biexciton energy shift and not very small interparticle distances, the presence of the nanoparticle improves the biexciton state preparation, since it effectively increases the area of the applied pulse.

View Article and Find Full Text PDF

We consider a hybrid nanostructure composed by semiconductor quantum dot coupled to a metallic nanoparticle and investigate the efficient creation of biexciton state in the quantum dot, when starting from the ground state and using linearly polarized laser pulses with on-off modulation. With numerical simulations of the coupled system density matrix equations, we show that a simple on-off-on pulse-sequence, previously derived for the case of an isolated quantum dot, can efficiently prepare the biexciton state even in the presence of the nanoparticle, for various interparticle distances and biexciton energy shifts. The pulse durations in the sequence are obtained from the solution of a transcendental equation.

View Article and Find Full Text PDF

We show that for the two widely used configurations of the double- atom-light coupling scheme, one where the control fields are applied in the same -subsystem and another where they are applied in different -subsystems, the forward propagation of the probe and signal fields is described by the same set of equations. We then use optimal control theory to find the spatially dependent optimal control fields that maximize the conversion efficiency from the probe to the signal field, for a given optical density. This work can find application in the implementation of efficient frequency and orbital angular momentum conversion devices for quantum information processing, as well as to be useful for many other applications using the double- atom-light coupling scheme.

View Article and Find Full Text PDF