Publications by authors named "Athanasios S Fokas"

Background And Objective: The Spline Reconstruction Technique (SRT) is a fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The purpose of this study is to provide a comparison between SRT, Filtered Back-Projection (FBP), Ordered Subset Expectation Maximization 2D (2D-OSEM), and the Tera-Tomo 3D algorithm, using phantom data at various acquisition durations as well as small-animal data obtained from the Mediso nanoScan® PET/CT scanner.

Methods: For this purpose, the "NEMA NU 4-2008 standards" protocol was employed at five different realizations and acquisition durations.

View Article and Find Full Text PDF

Quantitative magnetic resonance imaging (MRI) estimates magnetic parameters related to tissue, such as T1, T2 relaxation times and proton density. MR fingerprinting (MRF) is a new concept that uses pseudo-random, incoherent measurements to create a unique fingerprint for each tissue type to quantify magnet parameters. This paper aims to enhance MRF performance by investigating (i) the most suitable acquisition trajectory, and (ii) analytical transformations, suitable for radial acquisitions.

View Article and Find Full Text PDF

Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation-maximization (OSEM) algorithm for determining contrast and semiquantitative indices of (18)F-FDG uptake.

View Article and Find Full Text PDF

Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP).

Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of "custom made" cubic splines.

View Article and Find Full Text PDF