Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS).
View Article and Find Full Text PDFPreventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles.
View Article and Find Full Text PDFMarine organisms combat bacterial colonization by biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidase enzymes, whose activity can be emulated by nanoceria using milli- and micromolar concentrations of Br and HO. We show that the haloperoxidase-like activity of nanoceria can greatly be enhanced by Ln substitution in CeLnO.
View Article and Find Full Text PDFHighly transparent CeO/polycarbonate surfaces were fabricated that prevent adhesion, proliferation, and the spread of bacteria. CeO nanoparticles with diameters of 10-15 nm and lengths of 100-200 nm for this application were prepared by oxidizing aqueous dispersions of Ce(OH) with HO in the presence of nitrilotriacetic acid (NTA) as the capping agent. The surface-functionalized water-dispersible CeO nanorods showed high catalytic activity in the halogenation reactions, which makes them highly efficient functional mimics of haloperoxidases.
View Article and Find Full Text PDFPreventing bacterial adhesion on materials surfaces is an important problem in marine, industrial, medical and environmental fields and a topic of major medical and societal importance. A defense strategy of marine organisms against bacterial colonization relies on the biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidases, a class of metal-dependent enzymes, whose activity can be emulated by ceria nanoparticles.
View Article and Find Full Text PDFBackground: Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp.
View Article and Find Full Text PDF