In the context of public health surveillance, the aim is to monitor the occurrence of health-related events. Among them, statistical process monitoring focuses very often on the monitoring of rates and proportions (i.e.
View Article and Find Full Text PDFThe EWMA Sign control chart is an efficient tool for monitoring shifts in a process regardless the observations' underlying distribution. Recent studies have shown that, for nonparametric control charts, due to the discrete nature of the statistics being used (such as the Sign statistic), it is impossible to accurately compute their Run Length properties using Markov chain or integral equation methods. In this work, a modified nonparametric Phase II EWMA chart based on the Sign statistic is proposed and its Run Length properties are discussed.
View Article and Find Full Text PDFIn this work, we develop and study upper and lower one-sided EWMA control charts for monitoring correlated counts with finite range. Often in practice, data of that kind can be adequately described by a first-order binomial or beta-binomial autoregressive model. Especially, when there is evidence that data demonstrate extra-binomial variation, the latter model is preferable than the former.
View Article and Find Full Text PDFIn this work, we study upper-sided cumulative sum control charts that are suitable for monitoring geometrically inflated Poisson processes. We assume that a process is properly described by a two-parameter extension of the zero-inflated Poisson distribution, which can be used for modeling count data with an excessive number of zero and non-zero values. Two different upper-sided cumulative sum-type schemes are considered, both suitable for the detection of increasing shifts in the average of the process.
View Article and Find Full Text PDF