The unconfined compressive strength (UCS) of intact rocks is crucial for engineering applications, but traditional laboratory testing is often impractical, especially for historic buildings lacking sufficient core samples. Non-destructive tests like the Schmidt hammer rebound number and compressional wave velocity offer solutions, but correlating these with UCS requires complex mathematical models. This paper introduces a novel approach using an artificial neural network (ANN) to simultaneously correlate UCS with three non-destructive test indexes: Schmidt hammer rebound number, compressional wave velocity, and open-effective porosity.
View Article and Find Full Text PDF