High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks.
View Article and Find Full Text PDFEnsuring precise drug release at target sites is crucial for effective treatment. Here, pH-responsive nanoparticles for oral administration of mycophenolate mofetil, an alternative therapy for patients with inflammatory bowel disease unresponsive to conventional treatments is developed. However, its oral administration presents challenges due to its low solubility in the small intestine and high solubility and absorption in the stomach.
View Article and Find Full Text PDFToxicol Rep
April 2023
Cell culturing methods are increasingly used to reduce and replace the use of live animals in biomedical research and chemical toxicity testing. Although live animals are avoided when using cell culturing methods, they often contain animal-derived components of which one of the most commonly used is foetal bovine serum (FBS). FBS is added to cell culture media among other supplements to support cell attachment/spreading and cell proliferation.
View Article and Find Full Text PDFTwo-dimensional (2D) culturing of cancer cells has been indispensable for the development of anti-cancer drugs. Drug development, however, is lengthy and costly with a high attrition rate, calling to mind that 2D culturing does not mimic the three-dimensional (3D) tumour microenvironment . Thus, began the development of 3D culture models for cancer research.
View Article and Find Full Text PDFThe appreciation that cell interactions in tissues is dependent on their three dimensional (3D) distribution has stimulated the development of 3D cell culture models. We constructed an artificial 3D tumour by culturing human breast cancer JIMT-1 cells and human dermal fibroblasts (HDFs) in a 3D network of electrospun polycaprolactone fibres. Here, we investigate ECM components produced by the cells in the artificial 3D tumour, which is an important step in validating the model.
View Article and Find Full Text PDFTwo-dimensional cell culturing has proven inadequate as a reliable preclinical tumour model due to many inherent limitations. Hence, novel three-dimensional (3D) cell culture models are needed, which in many aspects can mimic a native tumour with 3D extracellular matrix. Here, we present a 3D electrospun polycaprolactone (PCL) mesh mimicking the collagen network of tissue.
View Article and Find Full Text PDFThe expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths.
View Article and Find Full Text PDF