Publications by authors named "Atena Jabbari"

Breast cancer treatment can be challenging, but a targeted drug delivery system (DDS) has the potential to make it more effective and reduce side effects. This study presents a novel nanotherapeutic targeted DDS developed through the self-assembly of an amphiphilic di-block copolymer to deliver the chemotherapy drug SN38 specifically to breast cancer cells. The vehicle was constructed from the PHPMA-b-PEAMA diblock copolymer synthesized via RAFT polymerization.

View Article and Find Full Text PDF

Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets.

View Article and Find Full Text PDF

Improving of tumor targeting and decreasing side effects at normal cells of antitumor drugs are necessary to promote the cancer chemotherapy efficacy. Herein, we have synthesized a novel 21-arm star like diblock polymer of β-cyclodextrin-{poly(ε-caprolactone)-poly(2-aminoethylmethacrylate)} which decorated with nucleolin aptamer (AS1411). The diblock polymer was prepared by combined ROP with electron transfer atom transfer radical polymerization (ARGET ATRP) methods followed camptothecin (CPT) encapsulation with high entrapment efficiency (65%).

View Article and Find Full Text PDF

In this work, the design, synthesis, and structure-activity relationships of a novel array of geranyloxy and farnesyloxy 3-acetylcoumarins were reported as potent soybean 15-lipoxygenase inhibitors. Among the prepared coumarins, 7-farnesyloxy-3-acetylcoumarin (12b) was found to be the most potent inhibitor by IC  = 0.68 μM while O-geranyl substituents at positions 5 and 6 of 3-acetylcoumarin (10a and 11a) were not inhibitors.

View Article and Find Full Text PDF

Allyloxy, Isopentenyloxy, geranyloxy and farnesyloxy derivatives of 3-carboxycoumarin, at position 5, 6, 7, and 8, were synthesized and their inhibitory potency against human 15-lipoxygenase-1 (human 15-LOX-1) were determined. Among the synthetic coumarins, O-allyl and O-isopentenyl derivatives demonstrated no considerable lipoxygenase inhibition while O-geranyl and O-farnesyl derivatives demonstrated potent inhibitory activity. 5-farnesyloxy-3-carboxycoumarin demonstrated the most potent inhibitory activity by IC50 = 0.

View Article and Find Full Text PDF

15-lipo-oxygenases are one of the iron-containing proteins capable of performing peroxidation of unsaturated fatty acids in animals and plants. The critical role of enzymes in the formation of inflammations, sensitivities, and some cancers has been demonstrated in mammals. The importance of enzymes has led to the development of mechanistic studies, product analysis, and synthesis of inhibitors.

View Article and Find Full Text PDF

Introduction: 15-Lipoxygenases (15-LOXes) are a family of iron-containing proteins that have the capability for unsaturated fatty acid peroxidation in animals and plants. Two types of the enzyme, 15-LOX-1 and 15-LOX-2, have been recognized in mammals to have different abilities in the peroxidation of arachidonic acid and linoleic acid. In mammalians, the critical role of the mentioned enzymes and their metabolites, hydroxyoctadecadienoic acid (HODE), lipoxins and eoxins, in the formation of inflammation, sensitivities, atherosclerosis and some cancers has been demonstrated.

View Article and Find Full Text PDF

All of the mono isopentenyloxy, -geranyloxy and -farnesyloxy derivatives of coumarin were synthesized and their inhibitory potency against soybean 15-lipoxygenase (SLO) and human 15-lipoxygenase-1 (HLO-1) were determined. Amongst the synthetic analogs, 5-farnesyloxycoumarin showed the most potent inhibitory activity against SLO (IC(50) = 0.8 μM) while 6-farnesyloxycoumarin was the strongest HLO-1 inhibitor (IC(50) = 1.

View Article and Find Full Text PDF
Article Synopsis
  • - 15-Lipoxygenases, nonheme iron-containing proteins, participate in unsaturated lipid peroxidation and are linked to inflammation, sensitivity, and certain cancers in mammals.
  • - The study focused on developing and testing new inhibitors, specifically 3-allyl-4-allyoxyaniline and 3-allyl-4-prenyloxyaniline amides, against soybean 15-lipoxygenase.
  • - Among these, 3-allyl-4-(farnesyloxy)-adamantanilide showed the highest effectiveness with an IC(50) value of 0.69 μM, and findings indicated that the size and electronic characteristics of the amide, along with the
View Article and Find Full Text PDF

A new series of amphiphilic α-cyclodextrins were synthesized by grafting N-acylated amino acids [valine, leucine, phenylalanine, methionine, and tryptophan (3a-e)] to the primary hydroxyl groups via ester bond formation. The synthetic pathway involves selective hexa-bromination of the primary hydroxyls followed by per-substitution with the carboxylate moiety of the N-acetyl residues in the presence of DBU (1,8-diazabicyclo[5,4,0]undec-7-ene). The ability of the synthetic compounds for the extraction of dopamine was studied.

View Article and Find Full Text PDF

A group of 2-alkoxy-5-methoxyallylbenzene were designed, synthesised and evaluated as potential inhibitors of the soybean 15-lipoxygenase (SLO) on the basis of the eugenol and esteragol structures. Compound 4d showed the best half maximal inhibitory concentration (IC₅₀) for SLO inhibition (IC₅₀ = 5.9 ± 0.

View Article and Find Full Text PDF