In the present work, the thermal conductivity (TC) of hexagonal structures of boron nitride and borophene was investigated by a reactive molecular dynamics (MD) simulation. Also, to figure out the effect of the boron and nitrogen in the hexagonal structure, five other hypothetical structures were created (in addition to the structure of boron nitride and borophene) and their structures were represented by the symbol BN, where refers to the number of boron atoms and refers to the number of nitrogen atoms. In this regard, BN refers to borophene, BN is boron nitride, and BN is called nitrophene.
View Article and Find Full Text PDFHexagonal boron nitride (h-BN) nanoparticles could induce interesting properties to silicone rubber (SR) but, the weak filler-matrix interfacial interaction causes agglomeration of the nanoparticles and declines the performance of the nanocomposite. In this work, h-BN nanoparticles were surface modified using vinyltrimethoxysilane (VTMS) at different concentrations. Before silane modification, h-BN nanoparticles were hydroxylated using 5 molar sodium hydroxide.
View Article and Find Full Text PDF