Dry reforming of methane (DRM) has recently received wide attention owing to its outstanding performance in the reduction and conversion of CH and CO to syngas (H and CO). From an industrial perspective, nickel (Ni)-supported catalysts have been deemed among the most suitable catalysts for DRM owing to their low cost and high activity compared to noble metals. However, a downside of nickel catalysts is their high susceptibility to deactivation due to coke formation and sintering at high temperatures.
View Article and Find Full Text PDFThe spontaneous formation of biological substances, such as human organs, are governed by different stimuli driven by complex 3D self-organization protocols at the molecular level. The fundamentals of such molecular self-assembly processes are critical for fabrication of advanced technological components in nature. We propose and experimentally demonstrate a promising 3D printing method with self-healing property based on molecular self-assembly-monolayer principles, which is conceptually different than the existing 3D printing protocols.
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2020
The oxidation of Au/Ag alloy thin films using radio-frequency oxygen plasma was studied in this work. It was demonstrated that there is a phase separation occurring between silver and gold. In addition, it was shown that the preferential oxidation of silver resulted in a solid-state diffusion of silver toward the surface where it oxidized and formed nanoporous microspheres.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs.
View Article and Find Full Text PDFMembranes (Basel)
December 2019
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis.
View Article and Find Full Text PDFPolymers (Basel)
September 2019
Multifunctional nanocomposite coatings were synthesized by reinforcing a polymeric matrix with halloysite nanotubes (HNTs) loaded with corrosion inhibitor (NaNO) and urea formaldehyde microcapsules (UFMCs) encapsulated with a self-healing agent (linseed oil (LO)). The developed polymeric nanocomposite coatings were applied on the polished mild steel substrate using the doctor's blade technique. The structural (FTIR, XPS) and thermogravimetric (TGA) analyses reveal the loading of HNTs with NaNO and encapsulation of UFMCs with linseed oil.
View Article and Find Full Text PDFSolid oxide fuel cells (SOFCs) are electrochemical conversion devices, which essentially consist of two porous electrodes separated by a dense, oxide ion conducting electrolyte. The performance and the durability of SOFCs strongly depend on the electrode microstructure. In this paper, the impact of a relatively long exposure time (up to 20 000 h) under realistic operation terms (temperature (T) = 850 °C, current density (J) = 190-250 mA cm) in the kinetics of microstructural degradation are investigated for porous nickel (Ni)/ceria gadolinium oxide (CGO) anodes, to understand the microstructural evolution in SOFC cermet anodes.
View Article and Find Full Text PDF