Publications by authors named "Atasi De Chatterjee"

, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive.

View Article and Find Full Text PDF

Novel nucleoside analogues named "triazoxins" were synthesized. Of these, two analogues were found to be highly effective against Giardia lamblia, an intestinal parasite and a major cause of waterborne infection, worldwide. While compound 7 reduced the growth of trophozoites in culture (IC, ~5 μM), compound 21 blocked the in vitro cyst production (IC ~5 μM).

View Article and Find Full Text PDF

, a single-celled eukaryote, colonizes and thrives in the small intestine of humans. Because of its compact and reduced genome, has adapted a "minimalistic" life style, as it becomes dependent on available resources of the small intestine. Because expresses fewer sphingolipid (SL) genes-and glycosphingolipids are critical for encystation-we investigated the SL metabolic cycle in this parasite.

View Article and Find Full Text PDF

Background: The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood.

Objective: The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration.

View Article and Find Full Text PDF

Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli.

View Article and Find Full Text PDF

Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs.

View Article and Find Full Text PDF

Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16 and 47 %. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin.

View Article and Find Full Text PDF

The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified.

View Article and Find Full Text PDF

A synthesis of α-aminophosphonate analogs of polyoxins, termed phosphonoxin C1, C2, and C3, has been achieved. The key step was the addition of lithium dimethyl phosphite to the aldehyde of a protected threose derivative. α-Hydroxyphosphonate analogs C4 and C5 were also obtained by taking advantage of an unprecedented conversion of an azide to hydroxyl during treatment with hydrogen on palladium on carbon.

View Article and Find Full Text PDF