Hyoscyamus albus L. seedlings respond positively to copper (Cu) excess. In the present study, to understand how roots cope with Cu excess, propagation and proteome composition in the presence of Cu were examined using a root culture system.
View Article and Find Full Text PDFRiboflavin secretion by Hyoscyamus albus hairy roots under Fe deficiency was examined to determine where riboflavin is produced and whether production occurs via an enhancement of riboflavin biosynthesis or a stimulation of flavin mononucleotide (FMN) hydrolysis. Confocal fluorescent microscopy showed that riboflavin was mainly localized in the epidermis and cortex of the root tip and, at the cellular level, in the apoplast. The expressions of three genes involved in the de novo biosynthesis of riboflavin (GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase; 6,7-dimethyl-8-ribityllumazine synthase; riboflavin synthase) were compared between Fe-starved and Fe-replete roots over a time-course of 7 days, using RT-PCR.
View Article and Find Full Text PDFOur previous study indicated that formation of furanocoumarin phytoalexins could be induced in Glehnia littoralis root cultures by treatment with 10-40 mM ascorbic acid (AsA). This furanocoumarin production is much less evident when G. littoralis roots are treated with AsA under iron-deficient conditions.
View Article and Find Full Text PDFHyoscyamus albus hairy roots secrete riboflavin under Fe-deficient conditions. To determine whether this secretion was linked to an enhancement of respiration, both riboflavin secretion and the reduction of 2,3,5-triphenyltetrazolium chloride (TTC), as a measure of respiration activity, were determined in hairy roots cultured under Fe-deficient and Fe-replete conditions, with or without aeration. Appreciable TTC-reducing activity was detected at the root tips, at the bases of lateral roots and in internal tissues, notably the vascular system.
View Article and Find Full Text PDFHyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron-deficient condition secreted riboflavin from the root tips into the culture medium and the productivity depended on the number and size of root tips among the clones. A decline of pH was observed before riboflavin production and root development.
View Article and Find Full Text PDF