Background: The increasing prevalence of diet-related non-communicable diseases (NCDs) in South Asia is concerning, with type 2 diabetes projected to rise to 68%, compared to the global increase of 44%. Encouraging healthy diets requires stronger policies for healthier food environments.
Methods: This study reviewed and assessed food environment policies in Bangladesh, India, Pakistan, and Sri Lanka from 2020 to 2022 using the Healthy Food Environment Policy Index (Food-EPI) and compared them with global best practices.
ZnO inverse opals combine the outstanding properties of the semiconductor ZnO with the high surface area of the open-porous framework, making them valuable photonic and catalysis support materials. One route to produce inverse opals is to mineralize the voids of close-packed polymer nanoparticle templates by chemical bath deposition (CBD) using a ZnO precursor solution, followed by template removal. To ensure synthesis control, the formation and growth of ZnO nanoparticles in a precursor solution containing the organic additive polyvinylpyrrolidone (PVP) was investigated by in situ ultra-small- and small-angle X-ray scattering (USAXS/SAXS).
View Article and Find Full Text PDFBackground: The global epidemic of type 2 diabetes mellitus (T2DM) renders its prevention a major public health priority. A key risk factor of diabetes is obesity and poor diets. Food environments have been found to influence people's diets and obesity, positing they may play a role in the prevalence of diabetes.
View Article and Find Full Text PDFBackground: The food environment has been found to impact population dietary behaviour. Our study aimed to systematically review the impact of different elements of the food environment on dietary intake and obesity.
Methods: We searched MEDLINE, Embase, PsychInfo, EconLit databases to identify literature that assessed the relationship between the built food environments (intervention) and dietary intake and obesity (outcomes), published between database inception to March 26, 2020.
Introduction: In low-middle income countries (LMICs) the role of food environments on obesity has been understudied. We address this gap by 1) examining the effect of food environments on adults' body size (BMI, waist circumference) and obesity; 2) measuring the heterogeneity of such effects by income and sex.
Methods: This cross-sectional study analysed South Asia Biobank surveillance and environment mapping data for 12,167 adults collected between 2018 and 2020 from 33 surveillance sites in Bangladesh and Sri Lanka.
A comprehensive understanding of the interactions between organic molecules and a metal oxide surface is essential for an efficient surface modification and the formation of organic-inorganic hybrids with technological applications ranging from heterogeneous catalysis and biomedical templates up to functional nanoporous matrices. In this work, first-principles calculations supported by experiments are used to provide the microstructural characteristics of (101̄0) surfaces of zinc oxide single crystals modified by azide terminated hydrocarbons, which graft on the oxide through a thiol group. On the computational side, we evaluate the specific interactions between the surface and the molecules with the chemical formula N(CH) SH, with = 1, 3, 6, 9.
View Article and Find Full Text PDFOxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied.
View Article and Find Full Text PDFBackground: When diagnosing and treating male infertility it is important to determine whether there are defects in the maturation process of sperm nuclei. Using nutritional supplements can improve the morphological and physiological condition of the spermatozoa. In recent years there has been an increase in the usage of supplements with different compositions which strives to determine the best combination and avoid side effects.
View Article and Find Full Text PDFThe robust, anisotropic tobacco mosaic virus (TMV) provides a monodisperse particle size and defined surface chemistry. Owing to these properties, it became an excellent bio-template for the synthesis of diverse nanostructured organic/inorganic functional materials. For selective mineralization of the bio-template, specific functional groups were introduced by means of different genetically encoded amino acids or peptide sequences into the polar virus surface.
View Article and Find Full Text PDFThe formation of virus-based semiconducting hybrid thin films is a two-step process, which involves assembly of virus particles as a template layer and subsequent selective mineralization of the virus surface with inorganic nanoparticles to build a semiconducting organic-inorganic hybrid film. Here, we present the use of the convective assembly technique to obtain homogeneous and dense template monolayers of wild-type tobacco mosaic virus (wt-TMV) and the TMV mutant E50Q, of which most particles do not have detectable amounts of RNA in the protein tube. On the top of the aligned virus layer, zinc oxide (ZnO) is deposited to prepare virus-ZnO semiconducting hybrid films with controllable thickness under mild conditions of the chemical bath deposition (CBD).
View Article and Find Full Text PDFThe bioinspired synthesis of hierarchical hybrid nanomaterials using biological objects as a template attracts growing interest for the design of new technologically relevant nanostructured materials. To ensure control over the shape and properties of the fabricated hybrid structures, understanding of the growth mechanism is required. In this work, tobacco mosaic virus (TMV) is used as a template to direct the synthesis of zinc sulfide (ZnS) at ambient conditions and different pH from additive-free aqueous solution.
View Article and Find Full Text PDFBiomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes.
View Article and Find Full Text PDFWe present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film.
View Article and Find Full Text PDFAccurate quantification of the chemical composition of eudialyte group minerals (EGM) with the electron probe microanalyzer is complicated by both mineralogical and X-ray-specific challenges. These include structural and chemical variability, mutual interferences of X-ray lines, in particular of the rare earth elements, diffusive volatility of light anions and cations, and instability of EGM under the electron beam. A novel analytical approach has been developed to overcome these analytical challenges.
View Article and Find Full Text PDFThe coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures.
View Article and Find Full Text PDFThe genetically determined design of structured functional bio/inorganic materials was investigated by applying a convective assembly approach. Wildtype tobacco mosaic virus (wt TMV) as well as several TMV mutants were organized on substrates over macroscopic-length scales. Depending on the virus type, the self-organization behavior showed pronounced differences in the surface arrangement under the same convective assembly conditions.
View Article and Find Full Text PDFDue to its small dimensions and high stability, tobacco mosaic virus (TMV) is used as nano-scaffold frequently. Its surface can be engineered to meet specific needs for technical, medical or materials applications. However, not all technically desirable TMV coat protein (CP) mutants can be propagated in plants successfully, if they change the efficiency of virion assembly.
View Article and Find Full Text PDFHydrogen sulfide (H(2)S) is a new gasotransmitter synthesized enzymatically from l-cysteine in cytosol and is oxidized in mitochondria. In the cardiovascular system, H(2)S regulates vascular tone, inhibits atherogenesis, and protects against myocardial ischemia-reperfusion injury. We examined the effect of statins on vascular H(2)S production.
View Article and Find Full Text PDFThis paper details the construction of a 137Cs gamma calibration curve that has been established for dicentric assay and the testing and validation of the curve through biological dosimetry in three situations of suspected workplace overexposure that arose accidentally or through negligence or lack of appropriate safety measures. The three situations were: (1) suspected 137Cs contamination in a factory air supply; (2) suspected exposure to an industrial 192Ir source; and (3) accidental exposure of construction workers to radiation from a 60Co radiotherapy source in a hospital medical physics department. From a total of 24 potentially-exposed subjects, only one worker was found to have a statistically significant dose (0.
View Article and Find Full Text PDFIn this paper, we report a novel synthetic approach towards electrically conductive ZnO nanowires close to ambient conditions using lambda-DNA as a template. Initially, the suitability of DNA to assemble ZnO nanocrystals into thin coatings was investigated. The ZnO nanowires formed on stretched and aligned lambda-DNA molecules were prepared via chemical bath deposition (CBD) of zinc acetate in methanol solution in the presence of polyvinylpyrrolidone (PVP).
View Article and Find Full Text PDFUnlabelled: The aim of the present experimental study was to follow up the connective tissue response after using ProRoot MTA and Titan cement to repair furcation perforations in dogs.
Material And Methods: Four animals aged 12 to 18 months were used in the study. Perforation defects were created in the center of the pulp chamber of mandibular premolars P2, P3 and P4, right and left.
Tethered bilayer lipid membranes are stable solid supported model membrane systems. They can be used to investigate the incorporation and function of membrane proteins. In order to study ion translocation mediated via incorporated proteins, insulating membranes are necessary.
View Article and Find Full Text PDFModel membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation.
View Article and Find Full Text PDF