Publications by authors named "Atanaska Velichkova"

Introduction: Millions of people undergo surgical procedures each year with many developing postsurgical pain. Dynamic allodynia can arise when, for example, clothing brushing close to the surgical site elicits pain. The allodynia circuits that enable crosstalk between afferent tactile inputs and central pain circuits have been studied, but the peripheral tactile drive has not been explored.

View Article and Find Full Text PDF

Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes.

View Article and Find Full Text PDF

Background: Postoperative pain is a common clinical problem that, in preclinical studies, has almost exclusively been studied in males. Altered C-fibre activity-dependent slowing (ADS) is a potential underlying mechanism, given it is altered after tissue inflammation and nerve injury, but this has not been explored post-incision. We therefore investigated the effect of hind-paw incision on C-fibre ADS in both sexes and the involvement of voltage-gated sodium channels (Na) as they contribute to ADS.

View Article and Find Full Text PDF

During axonal ensheathment, noncompact myelin channels formed at lateral edges of the myelinating process become arranged into tight paranodal spirals that resemble loops when cut in cross section. These adhere to the axon, concentrating voltage-dependent sodium channels at nodes of Ranvier and patterning the surrounding axon into distinct molecular domains. The signals responsible for forming and maintaining the complex structure of paranodal myelin are poorly understood.

View Article and Find Full Text PDF

Endometriosis is a common incurable inflammatory disorder that is associated with debilitating pelvic pain in women. Macrophages are central to the pathophysiology of endometriosis: they dictate the growth and vascularization of endometriosis lesions and more recently have been shown to promote lesion innervation. The aim of this study was to determine the mechanistic role of macrophages in producing pain associated with endometriosis.

View Article and Find Full Text PDF