Publications by authors named "Ataman Sendoel"

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes.

View Article and Find Full Text PDF

Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-β and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine.

View Article and Find Full Text PDF

Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts.

View Article and Find Full Text PDF

Understanding the mechanisms underlying cancer gene expression is critical for precision oncology. Posttranscriptional regulation is a key determinant of protein abundance and cancer cell behavior. However, to what extent posttranscriptional regulatory mechanisms impact protein levels and cancer progression is an ongoing question.

View Article and Find Full Text PDF

Transcriptional and translational control are key determinants of gene expression, however, to what extent these two processes can be collectively coordinated is still poorly understood. Here, we use Nanopore long-read sequencing and cap analysis of gene expression (CAGE-seq) to document the landscape of 5' and 3' untranslated region (UTR) isoforms and transcription start sites of epidermal stem cells, wild-type keratinocytes and squamous cell carcinomas. Focusing on squamous cell carcinomas, we show that a small cohort of genes with alternative 5'UTR isoforms exhibit overall increased translational efficiencies and are enriched in ribosomal proteins and splicing factors.

View Article and Find Full Text PDF
Article Synopsis
  • Cells deal with stress by activating a special response called the integrated stress response (ISR), which helps them manage protein production better.
  • Scientists studied a specific part of this response in skin cancer cells to understand how they react under stress, like when proteins become damaged.
  • They found that the ISR helps these cancer cells recover by organizing proteins properly, and this discovery could lead to new ways to treat cancer since it's a weakness specific to those cancer cells.
View Article and Find Full Text PDF

Prognostic models to predict the deterioration and mortality risk in COVID-19 patients are utterly needed to assist in informed decision making. Most of these models, however, are at high risk of bias, model overfitting, and unclear reporting. Here, we aimed to externally validate the modified (urea was omitted) 4C Deterioration Model and 4C Mortality Score in a cohort of Swiss COVID-19 patients and, second, to evaluate whether the inclusion of the neutrophil-to-lymphocyte ratio (NLR) improves the predictive performance of the models.

View Article and Find Full Text PDF

Among people infected with SARS-CoV-2, the determination of clinical features associated with poor outcome is essential to identify those at high risk of deterioration. Here, we aimed to investigate clinical phenotypes of patients hospitalized due to COVID-19 and to examine the predictive value of the neutrophil-to-lymphocyte ratio (NLR) in a representative patient collective of the Swiss population. We conducted a retrospective monocentriccohort study with patients hospitalized due to COVID-19 between 27 February and 31 December 2020.

View Article and Find Full Text PDF

The 5' untranslated region (5'UTR) is critical in determining post-transcriptional control, which is partly mediated by short upstream open reading frames (uORFs) present in half of mammalian transcripts. uORFs are generally considered to provide functionally important repression of the main-ORF by engaging initiating ribosomes, but under specific environmental conditions such as cellular stress, uORFs can become essential to activate the translation of the main coding sequence. In addition, a growing number of uORF-encoded bioactive microproteins have been described, which have the potential to significantly increase cellular protein diversity.

View Article and Find Full Text PDF

During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis.

View Article and Find Full Text PDF

Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer.

View Article and Find Full Text PDF

In Fig. 2g of this Article, a panel was inadvertently duplicated. The 'D30 IMQ' image was a duplicate of the 'D6 Ctrl' image.

View Article and Find Full Text PDF

Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon.

View Article and Find Full Text PDF

The skin barrier is the body's first line of defence against environmental assaults, and is maintained by epithelial stem cells (EpSCs). Despite the vulnerability of EpSCs to inflammatory pressures, neither the primary response to inflammation nor its enduring consequences are well understood. Here we report a prolonged memory to acute inflammation that enables mouse EpSCs to hasten barrier restoration after subsequent tissue damage.

View Article and Find Full Text PDF

We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared.

View Article and Find Full Text PDF

Microtubule-targeting chemotherapeutics induce apoptosis in cancer cells by promoting the phosphorylation and degradation of the anti-apoptotic BCL-2 family member MCL1. The signalling cascade linking microtubule disruption to MCL1 degradation remains however to be defined. Here, we establish an in vivo screening strategy in Caenorhabditis elegans to uncover genes involved in chemotherapy-induced apoptosis.

View Article and Find Full Text PDF

The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development.

View Article and Find Full Text PDF

Eukaryotic life depends largely on molecular oxygen. During evolution, ingenious mechanisms have evolved that allow organisms to adapt when oxygen levels decrease. Many of these adaptional responses to low oxygen are orchestrated by the heterodimeric transcription factor hypoxia-inducible factor (HIF).

View Article and Find Full Text PDF

Mining modern genomics for cancer therapies is predicated on weeding out "bystander" alterations (nonconsequential mutations) and identifying "driver" mutations responsible for tumorigenesis and/or metastasis. We used a direct in vivo RNA interference (RNAi) strategy to screen for genes that upon repression predispose mice to squamous cell carcinomas (SCCs). Seven of our top hits-including Myh9, which encodes nonmuscle myosin IIa-have not been linked to tumor development, yet tissue-specific Myh9 RNAi and Myh9 knockout trigger invasive SCC formation on tumor-susceptible backgrounds.

View Article and Find Full Text PDF

Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants.

View Article and Find Full Text PDF

The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen.

View Article and Find Full Text PDF

Cytotoxicity of cisplatin and mitomycin C (MMC) is ascribed largely to their ability to generate interstrand crosslinks (ICLs) in DNA, which block the progression of replication forks. The processing of ICLs requires the Fanconi anemia (FA) pathway, excision repair, and translesion DNA synthesis (TLS). It also requires homologous recombination (HR), which repairs double-strand breaks (DSBs) generated by cleavage of the blocked replication forks.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFalpha protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood.

View Article and Find Full Text PDF