Publications by authors named "Atal Saha"

The genus in the North Atlantic comprises of long lived deep-waters species that have been extensively fished upon, and many stocks are severely depleted across the Atlantic. This is particularly evident for the species . In recent papers, cryptic species have been indicated within this genus and molecular markers are therefore needed to provide identification for the species, including the cryptic species as a basis for advice regarding management and rebuilding of the stocks.

View Article and Find Full Text PDF

International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS).

View Article and Find Full Text PDF

The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome.

View Article and Find Full Text PDF

The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S.

View Article and Find Full Text PDF

Genetic population structure is often used to identify management units in exploited species, but the extent of genetic differentiation may be inflated by geographic variation in the level of hybridization between species. We identify the genetic population structure of and investigate possible introgression within the genus by analyzing 13 microsatellites in 2,562 redfish specimens sampled throughout the North Atlantic. The data support an historical divergence between the "shallow" and "deep" groups, beyond the Irminger Sea where they were described previously.

View Article and Find Full Text PDF