Publications by authors named "Ataf A Altaf"

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

In the pursuit of finding efficient D-π-A organic dyes as photosensitizers for dye-sensitized solar cells (DSSCs), first-principles calculations of guanidine-based dyes [-] were executed using density functional theory (DFT). The various electronic and optical properties of guanidine-based organic dyes with different D-π-A structural modifications were investigated. The structural modification of guanidine-based dyes largely affects the properties of molecules, such as excitation energies, the oscillator strength dipole moment, the transition dipole moment, and light-harvesting efficiencies.

View Article and Find Full Text PDF

The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m g. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications.

View Article and Find Full Text PDF

Rapidly detecting potentially toxic ions such as cyanide is paramount to maintaining a sustainable and environmentally friendly ecosystem for living organisms. In recent years, molecular sensors have been developed to detect cyanide ions, which provide a naked-eye or fluorometric response, making them an ideal choice for cyanide sensing. Nanosensors, on the other hand, have become increasingly popular over the last two decades due water solubility, quick reaction times, environmental friendliness, and straightforward synthesis.

View Article and Find Full Text PDF

The present work reports the photocatalytic degradation of alizarin red (AR) using Cu-doped manganese oxide () nanomaterials as catalysts under UV light irradiation. Cu-doped manganese oxides were synthesized by a very facile hydrothermal approach and characterized by energy dispersive X-ray spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis spectroscopy, and photoluminescence techniques. The structural, morphological, and optical characterization revealed that the synthesized compounds are nanoparticles (38.

View Article and Find Full Text PDF

Confining water to nanosized spaces creates a unique environment that can change water's structural and dynamic properties. When ions are present in these nanoscopic spaces, the limited number of water molecules and short screening length can dramatically affect how ions are distributed compared to the homogeneous distribution assumed in bulk aqueous solution. Here, we demonstrate that the chemical shift observed in F NMR spectroscopy of fluoride anion, F, probes the location of sodium ions, Na, confined in reverse micelles prepared from AOT (sodium dioctyl sulfosuccinate) surfactants.

View Article and Find Full Text PDF

The increasing pressure for lithium resources from the electric vehicle and nuclear energy industries means that new technologies to separate Mg from Li from salt water are in demand. To address this need, we fabricated lithium pyrene squarate covalent organic frameworks (Li-SQCOFs) to separate Mg/Li mixtures from salt water. We optimized the effect of the electrolyte and the amount of the adsorbent and then carried out a kinetics study on the adsorbent recovery at various pH levels using both batch and continuous flow adsorption methods.

View Article and Find Full Text PDF

The detection of key ions in environmental samples has garnered significant attention in recent years in the pursuit of a cleaner environment for living organisms. Bifunctional and multifunctional sensors, as opposed to single-species sensors, have emerged as a rapidly developing field. Many reports in the literature have documented the use of bifunctional sensors for the subsequent detection of metal and cyanide ions.

View Article and Find Full Text PDF

This work reports the investigation of activated carbons from virgin banana peduncle () and iron-impregnated banana peduncle () as adsorbents for the removal of As(V) and Cr(VI) ions from aqueous solutions. Both adsorbents were characterized through the point of zero charge, powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopic techniques. The effects of initial pH, contact time, temperature, and initial concentration on metal ion adsorption were investigated.

View Article and Find Full Text PDF

Breast cancer, one of the most significant tumors among all cancer cells, still has deficiencies for effective treatment. Moreover, substitute treatments employing natural products as bioactive metabolites has been seriously considered. The source of bioactive metabolites are not only the most numerous but also represent the richest source.

View Article and Find Full Text PDF

Murraya paniculata is herbal medicinal plant which is traditionally being used for management of cardiovascular, intestinal and respiratory (air way) disorders. This evergreen plant of tropical regions is a member of Rutaceace family. The goal of this review is to analyze and report the biological activities and active phytochemicals reported from Murraya paniculata (M.

View Article and Find Full Text PDF

Rapid detection of toxic ions has taken great attention in the last few decades due to its importance in maintaining a greener environment for human beings. The extreme toxicity of cyanide (CN) ions is a great environmental concern as its continued industrial use generates interest in facile and sensitive methods for CN ions detection. Since CN ions act as a ligand in coordination chemistry which rapidly coordinates with suitable metals and forms complexes, this ability was mainly explored in its detection.

View Article and Find Full Text PDF

A series of hydrazone derivatives of 2-(benzamido) benzohydrazide was designed, synthesized, and characterized utilizing FTIR, NMR and UV spectroscopic techniques along with mass spectrometry. Compound 10 was also characterized through X-ray crystallography. These synthesized compounds were assessed for their potential as anti-Alzheimer's agents by checking their AChE and BChE inhibition properties by analysis.

View Article and Find Full Text PDF

To maintain a green and sustainable environment for human beings, rapid detection of potentially toxic heavy metals like mercury (Hg(II)) has attracted great attention. Recently, sensors have been designed which can selectively detect Hg(II) over other common available cations and give a naked eye or fluorometric response. In the last two decades, the trend is shifting from bulky organic chemosensors toward nanoparticles due to their rapid response, low cost, eco-friendly and easy synthesis.

View Article and Find Full Text PDF

Rapid industrial development, vehicles, domestic activities and mishandling of garbage are the main sources of pollutants, which are destroying the atmosphere. There is a need to continuously monitor these pollutants for the safety of the environment and human beings. Conventional instruments for monitoring of toxic gases are expensive, bigger in size and time-consuming.

View Article and Find Full Text PDF

Naphthamides have pharmacological potential as they express strong activities against microorganisms. The commercially available naphthoyl chloride and 4-bromoaniline were condensed in dry dichloromethane (DCM) in the presence of Et N to form N-(4-bromophenyl)-1-naphthamide (86%) (3). Using a Pd(0) catalyzed Suzuki-Miyaura Cross-Coupling reaction of (3) and various boronic acids, a series of N-([1,1'-biaryl]-4-yl)-1-naphthamide derivatives (4a-h) were synthesized in moderate to good yields.

View Article and Find Full Text PDF

Oxidation of toluene (an organic pollutant), into useful chemical products, is of great interest nowadays. However, efficient conversion of toluene under mild and sustainable conditions is a thought-provoking task. Here, we report MnMoO nanomaterials , synthesized through a very facile solvothermal approach.

View Article and Find Full Text PDF

A series of different substituted terpyridine (tpy)-based ligands have been synthesized by Kröhnke method. Their binding behaviour was evaluated by complexing them with Co(II), Fe(II) and Zn(II) ions, which resulted in interesting coordination compounds with formulae, [Zn(tpy)]PF, [Co(tpy)](PF), [Fe(tpy)](PF) and interesting spectroscopic properties. Their absorption and emission behaviours in dilute solutions were investigated in order to explain structure-property associations and demonstrate the impact of different aryl substituents on the terpyridine scaffold as well as the role of the metal on the complexes.

View Article and Find Full Text PDF

Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials ( and ), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light.

View Article and Find Full Text PDF

In the present study, 4-methylpyridin-2-amine was reacted with 3-bromothiophene-2-carbaldehyde and the Schiff base (E)-1-(3-bromothiophen-2-yl)-N-(4-methylpyridin-2-yl)methanimine was obtained in a 79% yield. Coupling of the Schiff base with aryl/het-aryl boronic acids under Suzuki coupling reaction conditions, using Pd(PPh) as catalyst, yielded products with the hydrolysis of the imine linkages (--) in good to moderate yields. To gain mechanistic insight into the transition metal-catalyzed hydrolysis of the compounds, density functional theory (DFT) calculations were performed.

View Article and Find Full Text PDF
Article Synopsis
  • Twenty-three ferrocene-based anilides were synthesized and characterized using various analytical techniques, including NMR and X-ray crystallography.
  • Solid-state studies revealed that meta amide substituents promote intermolecular H-bonding, providing stability to those derivatives compared to para analogues through changes in conformation.
  • All synthesized compounds inhibited butyrylcholinesterase, with the most active compound showing 50% inhibition at a concentration similar to galantamine, indicating that while H-bonding plays a role, hydrophobic interactions are more critical for enzyme inhibition.
View Article and Find Full Text PDF

DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (, and ) for potential application in DNA sensing in alcoholic medium.

View Article and Find Full Text PDF

A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities.

View Article and Find Full Text PDF

Background: Introducing new candidates for various biological targets is a prime characteristic of the present day medicinal research and development. Guanidines are the important bioactive compounds and are well recognized for their diverse biological activities, especially as anticancer, antimicrobial and antioxidant agents. Due to the favorable electronic properties of ferrocene like lipophilicity, redox activity, stability in solution state and its easy derivatization, have made ferrocenyl compounds very popular molecules for biological uses.

View Article and Find Full Text PDF

A novel class of azo-guanidine compounds is introduced in this article. The novel compound 2-(2-hydroxyphenyl)-1-(phenylamino)-3-(phenylimino)guanidine (AG) was synthesized and well characterized by using different analytical instrumental techniques like elemental analysis, FTIR, (1)H and (13)C NMR, UV-Visible spectroscopy and cyclic voltammetry. The new compound was found interacting with DNA and shows clear color change in the solution.

View Article and Find Full Text PDF