Publications by authors named "Atac Imamoglu"

We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound s-wave Cooper pairs to a superfluid of bipolarons.

View Article and Find Full Text PDF

The half-filled lowest Landau level is a fascinating platform for researching interacting topological phases. A celebrated example is the composite Fermi liquid, a non-Fermi liquid formed by composite fermions in strong magnetic fields. Its zero-field counterpart is predicted in a twisted MoTe bilayer (tMoTe)-a recently discovered fractional Chern insulator exhibiting the fractional quantum anomalous Hall effect.

View Article and Find Full Text PDF

Heterostructures of two-dimensional transition metal dichalcogenides are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling interlayer excitons to doped charges in a trilayer structure. Their interactions are determined by the interlayer trion, whose spin-selective nature allows excitons to mediate an attractive interaction between charge carriers of only one spin species.

View Article and Find Full Text PDF

Understanding the Hubbard model is crucial for investigating various quantum many-body states and its fermionic and bosonic versions have been largely realized separately. Recently, transition metal dichalcogenides heterobilayers have emerged as a promising platform for simulating the rich physics of the Hubbard model. In this work, we explore the interplay between fermionic and bosonic populations, using a WS/WSe heterobilayer device that hosts this hybrid particle density.

View Article and Find Full Text PDF

The ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range.

View Article and Find Full Text PDF

The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance.

View Article and Find Full Text PDF

Graphene and its heterostructures provide a unique and versatile playground for explorations of strongly correlated electronic phases, ranging from unconventional fractional quantum Hall (FQH) states in a monolayer system to a plethora of superconducting and insulating states in twisted bilayers. However, the access to those fascinating phases has been thus far entirely restricted to transport techniques, due to the lack of a robust energy bandgap that makes graphene hard to access optically. Here we demonstrate an all-optical, noninvasive spectroscopic tool for probing electronic correlations in graphene using excited Rydberg excitons in an adjacent transition metal dichalcogenide monolayer.

View Article and Find Full Text PDF

Feshbach resonances provide an invaluable tool in atomic physics, enabling precise control of interactions and the preparation of complex quantum phases of matter. Here, we theoretically analyze a solid-state analog of a Feshbach resonance in two dimensional semiconductor heterostructures. In the presence of interlayer electron tunneling, the scattering of excitons and electrons occupying different layers can be resonantly enhanced by tuning an applied electric field.

View Article and Find Full Text PDF

Detecting magnetic order at the nanoscale is of central interest for the study of quantum magnetism in general, and the emerging field of moiré magnets in particular. Here, we analyze the exciton band structure that arises from a periodic modulation of the valley Zeeman effect. Despite long-range electron-hole exchange interactions, we find a sizable splitting in the energy of the bright circularly polarized exciton Umklapp resonances, which serves as a direct optical probe of magnetic order.

View Article and Find Full Text PDF

Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots to ultracold atoms trapped in optical tweezers. In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons.

View Article and Find Full Text PDF

Moiré superlattices in transition metal dichalcogenide bilayers provide a platform for exploring strong correlations with optical spectroscopy. Despite the observation of rich Mott-Wigner physics stemming from an interplay between the periodic potential and Coulomb interactions, the absence of tunnel coupling–induced hybridization of electronic states has ensured a classical layer degree of freedom. We investigated a MoSe homobilayer structure where interlayer coherent tunneling allows for electric field–controlled manipulation and measurement of the ground-state hole-layer pseudospin.

View Article and Find Full Text PDF

When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal. Efforts to observe this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 10 per centimetre squared form a Wigner crystal.

View Article and Find Full Text PDF

Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale.

View Article and Find Full Text PDF

We experimentally demonstrate a dipolar polariton based electric-field sensor. We tune and optimize the sensitivity of the sensor by varying the dipole moment of polaritons. We show polariton interactions play an important role in determining the conditions for optimal electric-field sensing, and achieve a sensitivity of 0.

View Article and Find Full Text PDF

The nontrivial geometry encoded in the quantum mechanical wave function has important consequences for both noninteracting and interacting systems. Yet, our understanding of the relationship between geometrical effects in noninteracting systems and their interacting counterparts is far from complete. Here, we demonstrate how the single-particle Berry curvature associated with the normal phase in two dimensions modifies the fluxoid quantization of a Bardeen-Cooper-Schrieffer superconductor.

View Article and Find Full Text PDF

van der Waals heterostructures combining two-dimensional magnetic and semiconducting layers constitute a promising platform for interfacing magnetism, electronics, and optics. Here, we use resonant optical reflection spectroscopy to observe the magnetic proximity effect in a gate-tunable MoSe_{2}/CrBr_{3} heterostructure. The high quality of the interface leads to a giant zero-field splitting of the K and K^{'} valley excitons in MoSe_{2}, equivalent to an external magnetic field of 12 T, with a weak but distinct electric field dependence that hints at potential for electrical control of magnetization.

View Article and Find Full Text PDF

Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored.

View Article and Find Full Text PDF

The second-order correlation function of light g(τ) constitutes a pivotal tool to quantify the quantum behavior of an emitter and in turn its potential for quantum information applications. The experimentally accessible time resolution of g(τ) is usually limited by the jitter of available single-photon detectors. Here, we present a versatile technique allowing g(τ) to be measured from a large variety of light signals with a time resolution given by the pulse length of a mode-locked laser.

View Article and Find Full Text PDF

Engineering strong interactions between optical photons is a challenge for quantum science. Polaritonics, which is based on the strong coupling of photons to atomic or electronic excitations in an optical resonator, has emerged as a promising approach to address this challenge, paving the way for applications such as photonic gates for quantum information processing and photonic quantum materials for the investigation of strongly correlated driven-dissipative systems. Recent experiments have demonstrated the onset of quantum correlations in exciton-polariton systems, showing that strong polariton blockade-the prevention of resonant injection of additional polaritons in a well delimited region by the presence of a single polariton-could be achieved if interactions were an order of magnitude stronger.

View Article and Find Full Text PDF

Cavity-polaritons in semiconductor microstructures have emerged as a promising system for exploring non-equilibrium dynamics of many-body systems. Key advances in this field, including the observation of polariton condensation, superfluidity, realization of topological photonic bands, and dissipative phase transitions, generically allow for a description based on a mean-field Gross-Pitaevskii formalism. Observation of polariton intensity squeezing and decoherence of a polarization entangled photon pair by a polariton condensate, on the other hand, demonstrate quantum effects that show up at high polariton occupancy.

View Article and Find Full Text PDF

The strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band.

View Article and Find Full Text PDF

Nonperturbative coupling between cavity photons and excitons leads to the formation of hybrid light-matter excitations, termed polaritons. In structures where photon absorption leads to the creation of excitons with aligned permanent dipoles, the elementary excitations, termed dipolar polaritons, are expected to exhibit enhanced interactions. Here, we report a substantial increase in interaction strength between dipolar polaritons as the size of the dipole is increased by tuning the applied gate voltage.

View Article and Find Full Text PDF

Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in CrGeTe and CrI. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI crystals.

View Article and Find Full Text PDF

Elementary quasiparticles in a two-dimensional electron system can be described as exciton polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modification of this description when the electrons occupy flat bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two-dimensional electron system in the strong coupling regime, where polariton resonances carry signatures of strongly correlated quantum Hall phases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5dvfnpr4lj8bpl6ch3eid0r7c4km8sji): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once