Droplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter.
View Article and Find Full Text PDFThe over- and under-expression of certain proteins in extracellular vesicles has been observed in many physiological and pathological conditions; however, a simple method to sort vesicles based on contrast in protein content is yet to be developed. We herein present a nonaffinity-based method for rapid and inexpensive isolation of lipid vesicles based on their membrane protein content. Based on a composition-specific thermophysical property change of vesicles at different protein contents, an acoustic property change that enabled an acoustophoretic separation was observed.
View Article and Find Full Text PDFAnalysis of liquid biopsy samples is a promising diagnostic intervention for noninvasive detection and monitoring of cancer genotypes. However, current methods used to assess mutation status are either costly, in the case of next-generation sequencing-based assays, or lacking in sensitivity, in the case of bulk quantitative PCR measurements. Digital droplet PCR (ddPCR) is at once a sensitive and low-cost method for detecting rare cancer mutations and measuring their variant allele frequency.
View Article and Find Full Text PDFBiomechanical properties of cells such as cellular stiffness have been increasingly considered as biomarkers for diseases. For instance, stiffness of cancer cells has been correlated to the malignant potential in certain cell lines. In cells, the cholesterol content plays a crucial role in determining stiffness.
View Article and Find Full Text PDFWe report on a newly-developed membrane stiffness-based separation of vesicles using a thermally-assisted acoustophoretic approach. By tuning the temperature, we achieved the separation of vesicles of the same size, shape, and charge but with different stiffness values. It was observed that at a specific transition point, the acoustic contrast factor of vesicles changed sign from positive to negative.
View Article and Find Full Text PDF