Publications by authors named "Aszodi J"

The potent antibacterial lanthipeptide microvionin, isolated from a culture of Microbacterium arborescens, exhibits a new triamino-dicarboxylic acid moiety, termed avionin, and an unprecedented N-terminal guanidino fatty acid. We identified the corresponding biosynthetic gene cluster and reconstituted central steps of avionin biosynthesis in vitro. Genome mining and isolation of nocavionin from Nocardia terpenica revealed a widespread distribution of this lanthipeptide class, termed lipolanthines, which may be useful as future antimicrobial drugs.

View Article and Find Full Text PDF

Anti-Bredt bridged bicyclo[3.2.1] gamma-lactams were designed as inhibitors of penicillin binding proteins (PBPs).

View Article and Find Full Text PDF

The synthesis and inhibitory activity against MraY of a series of simplified analogues of liposidomycins are described. These compounds were mainly obtained by performing parallel synthesis in the 6'-position of a scaffold that gathers key features found necessary for the binding to MraY. Thus, inhibitory activity was improved from 5300 to 140 nM.

View Article and Find Full Text PDF

O-beta-D-ribofuranosyl nucleoside I is the minimal structural entity of liposidomycins that maintains enzyme inhibitory activity on MraY. A set of compounds with hydroxyl patterns different from I has been synthesized. The presence of a hydroxyl group in the 3" position is essential for the activity.

View Article and Find Full Text PDF

The O-beta-D-ribofuranosyl nucleoside I is the minimal structural entity of liposidomycins maintaining enzyme inhibitory activity. Modifications performed on both the primary amine and the uracil moieties clearly demonstrate their major contribution to the inhibition of the bacterial translocase (MraY).

View Article and Find Full Text PDF

Tunicamycins (TCMs) and liposidomycins (LPMs) are naturally occurring inhibitors of the bacterial translocase (MraY). Based on structure-activity relationship (SAR) studies, a molecular model has been proposed for their inhibitory mechanism. This study points out the importance of the nucleoside moiety of liposidomycins in the inhibition of MraY.

View Article and Find Full Text PDF

A vinylogous cephalosporine bearing a dihydroxythiophene moiety as a potential catechol surrogate has been synthesised (I-e-beta). Even if the anti staphylococcus spectrum displayed by this compound is of interest, its activity against Pseudomonas species, expected for such a structure, remains disappointing.

View Article and Find Full Text PDF

As part of an effort to discover novel antibacterial agents, a new and efficient synthesis was established in order to provide a large amount of UDP-N-acetylmuramic acid (UDP-MurNAc).

View Article and Find Full Text PDF

The penicillin-binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid-transported N-acetyl glucosaminyl-beta-1, 4-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl+ ++- (L)-D-alanyl-D-alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46-N844) PBP1bgamma.

View Article and Find Full Text PDF