Publications by authors named "Aswin V Muthachikavil"

Thermodynamic and dynamic anomalies of water play a crucial role in supporting life on our planet. The two-state theory attributes these anomalies to a dynamic equilibrium between locally favored tetrahedral structures (LFTSs) and disordered normal liquid structures. This theory provides a straightforward, phenomenological explanation for water's unique thermodynamic and dynamic characteristics.

View Article and Find Full Text PDF

Modern thermodynamic models incorporate the concept of association (hydrogen bonding) and they can describe very satisfactorily many properties of water containing mixtures. They have not been successful in representing water's anomalous properties and this work provides a possible explanation. We have analyzed and interpreted recent experimental data, molecular simulation results, and two-state theory approaches and compared against the predictions from thermodynamic models.

View Article and Find Full Text PDF

The existence of two structural forms in liquid water has been a point of discussion for a long time. A phase transition between these two forms of liquid water has been proposed based on evidence from molecular simulations, and experiments have also been very recently able to track the proposed transition of the low-density liquid form to the high-density liquid form. We propose to use the average angle an oxygen atom makes with its neighbors to describe the structural environment of a water molecule.

View Article and Find Full Text PDF

The ability to form hydrogen bonds is one of the most important factors behind water's many anomalous properties. However, there is still no consensus on the hydrogen bond structure of liquid water, including the average number of hydrogen bonds in liquid water. We use molecular dynamics simulations of the polarizable iAMOEBA water model for investigating the hydrogen bond characteristics of liquid water over a wide range of temperatures and pressures.

View Article and Find Full Text PDF

The antifreeze activity of a type-III antifreeze protein (AFP) expressed in ocean pout (Zoarces americanus) is compared with that of a specific mutant (T18N) using all-atom molecular dynamics simulations. The antifreeze activity of the mutant is only 10% of the wild-type AFP. The results from this simulation study revealed the following insights into the mechanism of antifreeze action by type-III AFPs.

View Article and Find Full Text PDF