The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (NO) and superoxide (O) produced by phagocytes contributes to its success as a human pathogen. Recombination of NO and O generates peroxynitrite (ONOO), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward NO and O is well established, how Mtb responds to ONOO remains unclear.
View Article and Find Full Text PDFIron-sulfur (Fe-S) biogenesis requires multiprotein assembly systems, SUF and ISC, in most prokaryotes. () encodes a complete SUF system, the depletion of which was bactericidal. The ISC operon is truncated to a single gene (cysteine desulfurase), whose function remains uncertain.
View Article and Find Full Text PDFAttempts to understand gene regulation by global transcription factors have largely been limited to expression studies under binary conditions of presence and absence of the transcription factor. Studies addressing genome-wide transcriptional responses to changing transcription factor concentration at high resolution are lacking. Here, we create a data set containing the entire Escherichia coli transcriptome in Luria-Bertani (LB) broth as it responds to 10 different cAMP concentrations spanning the biological range.
View Article and Find Full Text PDFRestriction-modification (RM) systems are the most ubiquitous bacterial defence systems against bacteriophages. Using genome sequence data, we showed that RM systems are often shared among bacterial strains in a structured way. Examining the network of interconnections between bacterial strains within genera, we found that many strains share more RM systems than expected compared with a suitable null model.
View Article and Find Full Text PDFBacterial genome organization is primarily driven by chromosomal replication from a single origin of replication. However, chromosomal rearrangements, which can disrupt such organization, are inevitable in nature. Long DNA repeats are major players mediating rearrangements, large and small, via homologous recombination.
View Article and Find Full Text PDFEvolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions.
View Article and Find Full Text PDFDelhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are a threat to genome stability. In all domains of life, DSBs are faithfully fixed via homologous recombination. Recombination requires the presence of an uncut copy of duplex DNA which is used as a template for repair.
View Article and Find Full Text PDFsp. strain RSMS was described earlier as an efficient degrader of tributyl phosphate, an organic pollutant. This report describes the generation and annotation of the genome sequence of sp.
View Article and Find Full Text PDFThe evolution of regulatory networks in Bacteria has largely been explained at macroevolutionary scales through lateral gene transfer and gene duplication. Transcription factors (TF) have been found to be less conserved across species than their target genes (TG). This would be expected if TFs accumulate mutations faster than TGs.
View Article and Find Full Text PDFThe bacterium can initiate replication in the absence of the replication initiator protein DnaA and/or the canonical origin of replication in a background. This phenomenon, which can be primed by R-loops, is called constitutive stable DNA replication (cSDR). Whether DNA replication during cSDR initiates in a stochastic manner through the length of the chromosome or at specific sites and how can find adaptations to loss of fitness caused by cSDR remain inadequately answered.
View Article and Find Full Text PDFGene gain by horizontal gene transfer is a major pathway of genome innovation in bacteria. The current view posits that acquired genes initially need to be silenced and that a bacterial chromatin protein, H-NS, plays a role in this silencing. However, we lack direct observation of the early fate of a horizontally transferred gene to prove this theory.
View Article and Find Full Text PDFThe capacity of () to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood.
View Article and Find Full Text PDFThe invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in populations treated with a ribosome-targeting antibiotic.
View Article and Find Full Text PDFOxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.
View Article and Find Full Text PDFIn , the sigma factor σ directs RNA polymerase to transcribe growth-related genes, while σ directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ, and the non-coding 6S RNA which binds to the RNA polymerase-σ holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial.
View Article and Find Full Text PDFBacterial genomes are rich in horizontally acquired prophages. is an essential gene located in the prophage that is resident in many genomes. Employing a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-based gene silencing approach, we show that RacR is a negative regulator of the divergently transcribed and adjacent operon in K-12.
View Article and Find Full Text PDFHorizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic prophage in K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of in K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called and , which are adjacent to and coded divergently to .
View Article and Find Full Text PDFEvolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes /// Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance.
View Article and Find Full Text PDFMethods Mol Biol
April 2018
The advent of Chromatin Immunoprecipitation sequencing (ChIP-Seq) has allowed the identification of genomic regions bound by a DNA binding protein in-vivo on a genome-wide scale. The impact of the DNA binding protein on gene expression can be addressed using transcriptome experiments in appropriate genetic settings. Overlaying the above two sources of data enables us to dissect the direct and indirect effects of a DNA binding protein on gene expression.
View Article and Find Full Text PDFProlonged stationary phase is an approximation of natural environments presenting a range of stresses. Survival in prolonged stationary phase requires alternative metabolic pathways for survival. This study describes the repertoire of mutations accumulating in starving populations in lysogeny broth.
View Article and Find Full Text PDFGenomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria.
View Article and Find Full Text PDFIn rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth--such as those involved in protein synthesis--are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels. (1) This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome. (2) Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome, (3) which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance.
View Article and Find Full Text PDF