The emergence of sustainable polymers and technologies has led to the development of innovative materials with minimal carbon emissions which find extensive applications in wearable electronics, biomedical sensors, and Internet of Things (IoT)-based monitoring systems. Nanocellulose which can be generated from abundant biomass materials has been widely recognized as a sustainable alternative for a diverse range of applications due to its remarkable properties and eco-friendly nature. By making use of the unique and easily accessible coordination transformation property of Co(II) ions and associated visible light absorption changes, we report a novel Co(II) cation-incorporated nanocellulose/malonic acid hybrid aerogel material that exhibits reversible thermochromism induced by thermal stimulus in the presence of atmospheric moisture.
View Article and Find Full Text PDFOxidative reactions of the hydroxyl radical (·OH) with methimazole (MMI), an antithyroid drug, are crucial for understanding its fate in oxidizing environments. By synergistically integrating density functional theory and ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF MS/MS) techniques, we elucidated the transients and transformation products (TPs) arising from the ·OH-MMI reactions. We probed two hydrogen-atom abstraction (HA) reactions, three radical adduct formation reactions, and single electron transfer (SET) at the M06-2/6-311++G(d,p)/SMD(water) level.
View Article and Find Full Text PDFGold nanoclusters (AuNCs) are an intensely pursued class of fluorophores with excellent biocompatibility, high water solubility, and ease of further conjugation. However, their low quantum yield limits their applications, such as ultra-sensitive chemical or molecular sensing. To address this problem, various strategies have been adopted for augmenting their fluorescence intensity.
View Article and Find Full Text PDFA green strategy for the synthesis of bimetallic core-shell Au@Pd nanoflowers (NFs) employing banana pseudo-stem-derived TEMPO-oxidized cellulose nanocrystals (TCNC) as both capping and shape-directing agent via seed-mediated method is presented. Flower-like nanostructures of Au@Pd bound to TEMPO-oxidized cellulose nanocrystals (TCNC-Au@Pd) were decorated on amino-functionalized graphene (NH-RGO) without losing their unique structure, allowing them to be deployed as an efficient, reusable and a green alternative heterogeneous catalyst. The decisive role of TCNC in the structural metamorphosis of nanoparticle morphology were inferred from the structural and morphology analyses.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2020
Sirolimus, a lipophilic macrolide, is a well-known immunosuppressant drug used for coating coronary stents and for preventing rejection of kidney transplants in humans. Since Sirolimus is a relatively large molecule with an average mass 914.172 g/mol, size exclusion chromatography (SEC) was employed for exploring its potential for the estimation of Sirolimus content from blood samples.
View Article and Find Full Text PDF