Publications by authors named "Aswan Nalli"

Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.

View Article and Find Full Text PDF

Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code.

View Article and Find Full Text PDF

We have investigated the mechanism of action of SWITCH1/DYAD (SWI1), an important regulator of plant meiosis in Arabidopsis that is required for meiotic chromosome organization including maintenance of sister chromatid cohesion. The central portion of SWI1 contains a domain of unknown function that shows strong conservation between SWI1 and its orthologs in maize and rice and is also found in paralogs including MALE MEIOCYTE DEATH 1 (MMD1). In order to examine the role of this domain we performed domain swap experiments into SWI1 in a swi1 mutant background.

View Article and Find Full Text PDF

The serotonin (5-HT) receptor is an important neurotransmitter receptor that belongs to the G protein-coupled receptor (GPCR) family. It is implicated in a variety of cognitive and behavioral functions and serves as an important drug target for neuropsychiatric disorders such as anxiety and depression. Previous work from our laboratory has demonstrated that membrane cholesterol plays an important role in the function of the serotonin receptor.

View Article and Find Full Text PDF