4-Nitroaniline (4NA) is a common organic pollutant that is released into the environment during the manufacture and processing of a wide variety of industrial products. This article describes the use of an emulsion liquid membrane process to remove 4NA from aqueous solutions using a type 1 facilitated transport mechanism. Optimization of the removal process was carried out by analyzing the efficiency of 4NA removal from the feed phase and the initial apparent feed/membrane fluxes and permeabilities under different experimental conditions.
View Article and Find Full Text PDFThe molecule 4-aminophenol (4AP) is recognised as a serious environmental pollutant that enters the environment during the manufacture and processing of a variety of industrial processes and through the degradation of some pharmaceutical products. This paper describes a comparative study of 4AP removal from aqueous solutions by emulsion liquid membranes using acid and basic type 1-facilitated transports. The results are explained by analysing the stripping process through both the different relative acid/basic strength of the hydroxyl and amine groups of the 4AP molecule and the hydrogen-bonding capacity with water of the ionisation products generated by the reaction of 4AP with HCl or NaOH.
View Article and Find Full Text PDFEmulsion liquid membranes have been successfully used for the removal of different types of organic and inorganic pollutants by means of carrier-mediated transport mechanisms. However, the models that describe the kinetics and transport of such mechanisms are very complex due to the high number of model parameters. Starting from an analysis of the similarity between the elemental mechanisms of carrier-mediated transport in liquid membranes and of transport in adsorption processes, this paper presents an experimental analysis of the possibility of applying kinetic and mechanistic models developed for adsorption to carrier-mediated transport in emulsion liquid membranes.
View Article and Find Full Text PDFIn this paper, we describe the removal of cephalosporin C (CPC) from aqueous solutions by adsorption onto activated olive stones (AOS) in a stirred tank. For comparative purposes, several experiments of adsorption onto commercial granular activated carbon were carried out. A quantum study of the different species of cephalosporin C that, depending on the pH, exist in aqueous solution pointed to a favorable mass transfer process during adsorption.
View Article and Find Full Text PDFWater is a vital element for life and the environment [...
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2021
Currently, there is great concern about global water pollution. Wastewater generally contains substances called emerging pollutants, and if the removal of these pollutants is not given sufficient attention, the pollutants can enter into the water cycle and reach the water supply for domestic use, causing adverse effects on the well-being of people. In order to avoid this menace, a multitude of techniques to reduce the high concentration levels of these substances dissolved in water are being researched and developed.
View Article and Find Full Text PDFPertraction of Co(II) through novel supported liquid membranes prepared by ultrasound, using bis-2-ethylhexyl phosphoric acid as carrier, sulfuric acid as stripping agent and a counter-transport mechanism, is studied in this paper. Supported liquid membrane characterization through scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy shows the impregnation of the microporous polymer support by the membrane phase by the action of ultrasound. The effect on the initial flux of Co(II) of different experimental conditions is analyzed to optimize the transport process.
View Article and Find Full Text PDFThe removal of organic dyes in aquatic media is, nowadays, a very pressing environmental problem. These dyes usually come from industries, such as textiles, food, and pharmaceuticals, among others, and their harm is produced by preventing the penetration of solar radiation in the aquatic medium, which leads to a great reduction in the process of photosynthesis, therefore damaging the aquatic ecosystems. The feasibility of implementing a process of nanofiltration in the purification treatment of an aqueous stream with small size dyes has been studied.
View Article and Find Full Text PDF