Variability in microbial growth is a keystone of modern Quantitative Microbiological Risk Assessment (QMRA). However, there are still significant knowledge gaps on how to model variability, with the most common assumption being that variability is constant. This is implemented by an error term (with constant variance) added on top of the secondary growth model (for the square root of the growth rate).
View Article and Find Full Text PDFThis study delves into an exploration of the antimicrobial and antibiofilm properties of the essential oils (EOs) of cinnamon, garlic, and onion on Enteritidis. Firstly, disc diffusion and minimum inhibitory concentration (MIC) techniques were employed to assess the antibacterial activity of the EOs. Additionally, the study explored the effect of these EOs on both initial cell attachment and 24 h-preformed biofilms.
View Article and Find Full Text PDFThe global coconut water market is projected to grow in the upcoming years, attributed to its numerous health benefits. However, due to its susceptibility to microbial contamination and the limitations of non-thermal decontamination methods, thermal treatments remain the primary approach to ensure the shelf-life stability and the microbiological safety of the product. In this study, the thermal inactivation of , a surrogate, was evaluated in coconut water and in tryptone soy broth (TSB) under both isothermal (50-60 °C) and dynamic conditions (from 30 to 60 °C, with temperature increases of 0.
View Article and Find Full Text PDFPlant essential oils (EOs) have an important ability to inhibit ethylene biosynthesis. Nevertheless, the effects of EOs on the key components of ethylene biosynthesis (l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase activity, and ACC content) have not yet been thoroughly studied. Accordingly, this study focused on the effects of emitted EOs from active packaging (EO doses from 100 to 1000 mg m) on the key components of ethylene biosynthesis of blueberries and blackberries under several storage temperatures.
View Article and Find Full Text PDFis a spoilage microorganism responsible for relevant product and economic losses in the beverage and juice industry. Spores of this microorganism can survive industrial heat treatments and cause spoilage during posterior storage. Therefore, an effective design of processing treatments requires an accurate understanding of the heat resistance of this microorganism.
View Article and Find Full Text PDFThe mathematical models used in predictive microbiology contain parameters that must be estimated based on experimental data. Due to experimental uncertainty and variability, they cannot be known exactly and must be reported with a measure of uncertainty (usually a standard deviation). In order to increase precision (i.
View Article and Find Full Text PDFDecisions regarding microbial risk assessment usually have to be carried out with incomplete information. This is due to the large number of possible scenarios and the lack of specific data for the problem considered. Consequently, risk assessment studies are based on the information obtained with a small number of bacterial cells which are considered the most heat resistant and/or more capable of multiplying during storage.
View Article and Find Full Text PDFHeat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear.
View Article and Find Full Text PDF