Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly.
View Article and Find Full Text PDFSQUAMOSA PROMOTER BINDING-LIKE (SPL) proteins constitute a large family of transcription factors known to play key roles in growth and developmental processes, including juvenile-to-adult and vegetative-to-reproductive phase transitions. This makes SPLs interesting targets for precision breeding in plants of the Nicotiana genus used as e.g.
View Article and Find Full Text PDFCRISPR/Cas has revolutionized genome engineering in plants. However, the use of anti-CRISPR proteins as tools to prevent CRISPR/Cas-mediated gene editing and gene activation in plants has not been explored yet. This study describes the characterization of two anti-CRISPR proteins, AcrIIA4 and AcrVA1, in Nicotiana benthamiana.
View Article and Find Full Text PDFCRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation.
View Article and Find Full Text PDFThe current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions.
View Article and Find Full Text PDFAntivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner.
View Article and Find Full Text PDFModular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways.
View Article and Find Full Text PDFBackground: The efficiency, versatility and multiplexing capacity of RNA-guided genome engineering using the CRISPR/Cas9 technology enables a variety of applications in plants, ranging from gene editing to the construction of transcriptional gene circuits, many of which depend on the technical ability to compose and transfer complex synthetic instructions into the plant cell. The engineering principles of standardization and modularity applied to DNA cloning are impacting plant genetic engineering, by increasing multigene assembly efficiency and by fostering the exchange of well-defined physical DNA parts with precise functional information.
Results: Here we describe the adaptation of the RNA-guided Cas9 system to GoldenBraid (GB), a modular DNA construction framework being increasingly used in Plant Synthetic Biology.
The production of neutralizing immunoglobulin A (IgA) in edible fruits as a means of oral passive immunization is a promising strategy for the inexpensive treatment of mucosal diseases. This approach is based on the assumption that the edible status remains unaltered in the immunoglobulin-expressing fruit, and therefore extensive purification is not required for mucosal delivery. However, unintended effects associated with IgA expression such as toxic secondary metabolites and protein allergens cannot be dismissed a priori and need to be investigated.
View Article and Find Full Text PDFNew evidence is emerging which indicates that population variants in plant virus infections are not uniformly distributed along the plant, but structured in a mosaic-like pattern due to limitation to the superinfection imposed by resident viral clones. The mechanisms that prevent the infection of a challenge virus into a previously infected cell, a phenomenon known as superinfection exclusion (SE) or Homologous Interference, are only partially understood. By taking advantage of a deconstructed tobacco mosaic virus (TMV) system, where the capsid protein (CP) gene is replaced by fluorescent proteins, an exclusion mechanism independent of CP was unveiled.
View Article and Find Full Text PDFThe plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production.
View Article and Find Full Text PDFConsidering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence.
View Article and Find Full Text PDFSynthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs.
View Article and Find Full Text PDFExpert Rev Vaccines
August 2010
Recombinant antigen production in plants is a safe and economically sound strategy for vaccine development, particularly for oral/mucosal vaccination, but subunit vaccines usually suffer from weak immunogenicity and require adjuvants that escort the antigens, target them to relevant sites and/or activate antigen-presenting cells for elicitation of protective immunity. Genetic fusions of antigens with bacterial adjuvants as the B subunit of the cholera toxin have been successful in inducing protective immunity of plant-made vaccines. In addition, several plant compounds, mainly plant defensive molecules as lectins and saponins, have shown strong adjuvant activities.
View Article and Find Full Text PDFVirus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants.
View Article and Find Full Text PDFA combination of cDNA-amplified fragment length polymorphism (AFLP) and bulked segregant analysis (BSA) was used to identify genes co-segregating with earliness of tuberization in a diploid potato population. This approach identified 37 transcript-derived fragments with a polymorphic segregation pattern between early and late tuberizing bulks. Most of the identified transcripts mapped to chromosomes 5 (19 markers) and 12 (eight markers) of the paternal map.
View Article and Find Full Text PDFExpression profiling by cDNA-AFLP is commonly used to display the transcriptome of a specific tissue, treatment or developmental stage. In this paper, cDNA-AFLP has been used to study transcripts expressed in segregating populations from Arabidopsis thaliana and potato (Solanum tuberosum). The genetic differences between the offspring genotypes are thus visualized as polymorphisms in the transcriptome.
View Article and Find Full Text PDF