Publications by authors named "Asuma Janeena"

Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica.

View Article and Find Full Text PDF

The sudden rise in the demand has led to large-scale production of hydroxychloroquine (HCQ) in the global market for various diseases such as malaria, rheumatic arthritis, and systemic lupus erythematous and prophylactic treatment of early SARS-CoV-2 outbreak. Thorough monitoring of HCQ intake patients is in high demand; hence, we have developed a redox amino acid encoded fluorescent protein-based electrochemical biosensor for sensitive and selective detection of HCQ. This electrochemical biosensor is generated based on the two-electron transfer process between redox amino acid (3,4-dihydroxy-L-phenylalanine, DOPA) encoded bio-redox protein and the HCQ forms the conjugate.

View Article and Find Full Text PDF

Lead (Pb) is a well-known heavy metal and toxic synthetic industrial pollutant in the ecosystem and causes severe threats to living organisms. It is paramount to develop a sustainable microbial engineering approach to remove synthetic pollutants from the environment. Genetic code engineering is emerging as an important microbial engineering tool in biosciences to biosynthesis congener protein production beyond the canonical set of natural molecules and expand the chemistries of living cells.

View Article and Find Full Text PDF

Supramolecular gel material built from low-molecular-weight (LMW) gelators finds potential applications in various fields, especially in drug delivery, cell encapsulation and delivery, and tissue engineering. The majority of the LMW gelators in these applications are based on functionalized peptides/amino acids consisting of proteinogenic amino acids which are proteolytically unstable. Herein, we have developed a new LMW gelator containing non-proteinogenic amino acid namely 2,3-diaminopropionic acid (Dap), a key precursor in the synthesis of many antibiotics namely viomycin and capreomycin, by functionalizing with fluorenylmethoxycarbonyl at both amino terminals of Dap [Fm-Dap(Fm)].

View Article and Find Full Text PDF

Collagen plays a critical role in the structural design of the extracellular matrix (ECM) and cell signaling in mammals, which makes it one of the most promising biomaterials with versatile applications. However, there is considerable concern regarding the purity and predictability of the product performance. At present, it is mainly derived as a mixture of collagen (different types) from animal tissues, where the selective enrichment of a particular type of collagen is generally difficult and expensive.

View Article and Find Full Text PDF