Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies.
View Article and Find Full Text PDFInflamm Regen
February 2023
Parkinson's disease (PD) is the second most common neurodegenerative disease and a prime target of cell therapies. In fact, aborted fetal tissue has been used as donor material for such therapies since the 1980s. These cell therapies, however, suffer from several problems, such as a short supply of donor materials, quality instability of the tissues, and ethical restrictions.
View Article and Find Full Text PDFThe therapeutic effect of a cell replacement therapy for Parkinson's disease (PD) depends on the proper maturation of grafted dopaminergic (DA) neurons and their functional innervation in the host brain. In the brain, laminin, an extracellular matrix protein, regulates signaling pathways for the survival and development of neurons by interacting with integrins. The heparan sulfate (HS) chain binds mildly to various neurotrophic factors and regulates their intracellular signaling.
View Article and Find Full Text PDFBackground: Pluripotent stem cell (PSC)-derived dopaminergic (DA) neurons are an expected source of cell therapy for Parkinson's disease. The transplantation of cell aggregates or neurospheres, instead of a single cell suspension has several advantages, such as keeping the 3D structure of the donor cells and ease of handling. For this PSC-based therapy to become a widely available treatment, cryopreservation of the final product is critical in the manufacturing process.
View Article and Find Full Text PDFStem cell-based therapies for Parkinson's disease are now being applied clinically. Notably, studies have shown that controlling the graft-induced immune response improves the results. In this mini-review, we concisely summarize current approaches used for this control.
View Article and Find Full Text PDFThe reconstruction of lost neural circuits by cell replacement is a possible treatment for neurological deficits after cerebral cortex injury. Cerebral organoids can be a novel source for cell transplantation, but because the cellular composition of the organoids changes along the time course of the development, it remains unclear which developmental stage of the organoids is most suitable for reconstructing the corticospinal tract. Here, we transplanted human embryonic stem cell-derived cerebral organoids at 6 or 10 weeks after differentiation (6w- or 10w-organoids) into mouse cerebral cortices.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC)-derived dopaminergic (DA) neurons are an expected source for cell-based therapies for Parkinson's disease (PD). The regulatory criteria for the clinical application of these therapies, however, have not been established. Here we show the results of our pre-clinical study, in which we evaluate the safety and efficacy of dopaminergic progenitors (DAPs) derived from a clinical-grade human iPSC line.
View Article and Find Full Text PDFBackground: Cell transplantation is expected to be a promising treatment for Parkinson's disease (PD), in which re-innervation of the host striatum by grafted dopamine (DA) neurons is essential. In particular, the dorsolateral part of the striatum is important because it is the target of midbrain A9 DA neurons, which are degenerated in PD pathology. The effect of exercise on the survival and maturation of grafted neurons has been reported in several neurological disease models, but never in PD models.
View Article and Find Full Text PDFThe purification of pluripotent stem cell-derived cortico-fugal projection neurons (PSC-CFuPNs) is useful for disease modeling and cell therapies related to the dysfunction of cortical motor neurons, such as amyotrophic lateral sclerosis (ALS) or stroke. However, no CFuPN-specific surface markers for the purification are known. Recently, microRNAs (miRNAs) have been reported as alternatives to surface markers.
View Article and Find Full Text PDFRinsho Shinkeigaku
March 2019
Cell therapy for Parkinson's disease has a history of being applied clinically with aborted embryos as donor source. Efficacy of the therapy under the appropriate condition has been reported. Based on this experience and the advancement of stem cell technology, clinical trials of cell therapy with embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) are going to start soon in several countries.
View Article and Find Full Text PDFThe aim of this study was to investigate the efficacy and safety of YM-58483, a small molecular antagonist of Ca release-activated Ca (CRAC) channels, for the treatment of rheumatoid arthritis (RA), in vivo and ex vivo. YM-58483 was continuously injected subcutaneously in a collagen-induced arthritis (CIA) mouS.E.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPS cells) are a promising source for a cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminergic neurons progressively degenerate. However, long-term analysis of human iPS cell-derived dopaminergic neurons in primate PD models has never been performed to our knowledge. Here we show that human iPS cell-derived dopaminergic progenitor cells survived and functioned as midbrain dopaminergic neurons in a primate model of PD (Macaca fascicularis) treated with the neurotoxin MPTP.
View Article and Find Full Text PDFThe banking of human leukocyte antigen (HLA)-homozygous-induced pluripotent stem cells (iPSCs) is considered a future clinical strategy for HLA-matched cell transplantation to reduce immunological graft rejection. Here we show the efficacy of major histocompatibility complex (MHC)-matched allogeneic neural cell grafting in the brain, which is considered a less immune-responsive tissue, using iPSCs derived from an MHC homozygous cynomolgus macaque. Positron emission tomography imaging reveals neuroinflammation associated with an immune response against MHC-mismatched grafted cells.
View Article and Find Full Text PDFThe cerebral cortical tissue of murine embryo and pluripotent stem cell (PSC)-derived neurons can survive in the brain and extend axons to the spinal cord. For efficient cell integration to the corticospinal tract (CST) after transplantation, the induction or selection of cortical motor neurons is important. However, precise information about the appropriate cell population remains unclear.
View Article and Find Full Text PDFPatient-specific induced pluripotent stem cells (iPSCs) are a promising source for cell transplantation therapy. In Parkinson's disease (PD) patients, however, their vulnerability and the transmission of pathological α-Synuclein are possible drawbacks that may prevent PD-specific iPSCs (PDiPSCs) from being used in clinical settings. In this study, we generated iPSCs from idiopathic PD patients and found that there was no significant vulnerability between dopaminergic (DA) neurons generated from healthy individuals and idiopathic PD patients.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is an autosomal-dominant multi-system disease caused by expanded CTG repeats in dystrophia myotonica protein kinase (DMPK). The expanded CTG repeats are unstable and can increase the length of the gene with age, which worsens the symptoms. In order to establish a human stem cell system suitable for the investigation of repeat instability, DM1 patient-derived iPSCs were generated and differentiated into three cell types commonly affected in DM1, namely cardiomyocytes, neurons and myocytes.
View Article and Find Full Text PDFThe efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation.
View Article and Find Full Text PDFIn Parkinson's disease (PD), dopamine neurons in the substantia nigra are degenerated and lost. Cell therapy for PD replaces the lost dopamine neurons by transplanting donor dopamine neural progenitor cells. Cell therapy for PD has been performed in the clinic since the 1980s and uses donor cells from the mesencephalon of aborted embryos.
View Article and Find Full Text PDFBackground: To evaluate the in vivo function of human dopaminergic (DA) neurons, Parkinson's disease (PD) model rats made by the hemi-lateral injection of 6-hydroxydopamine (6-OHDA) are widely used as host animals. In the case of such xeno-transplantation, however, immunosuppression is needed for good survival of the grafted cells.
New Methods: In order to determine whether human mature neurons can survive in X-linked severe combined immunodeficiency (X-SCID) rats without immunosuppression, we grafted human embryonic stem cell (ESC)-derived DA neurons into the striatum of X-SCID rats.
Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson's disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN.
View Article and Find Full Text PDFIn order to apply human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) to regenerative medicine, the cells should be produced under restricted conditions conforming to GMP guidelines. Since the conventional culture system has some issues that need to be addressed to achieve this goal, we developed a novel culture system. We found that recombinant laminin-511 E8 fragments are useful matrices for maintaining hESCs and hiPSCs when used in combination with a completely xeno-free (Xf) medium, StemFit™.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) provide the potential for autologous transplantation using cells derived from a patient's own cells. However, the immunogenicity of iPSCs or their derivatives has been a matter of controversy, and up to now there has been no direct comparison of autologous and allogeneic transplantation in the brains of humans or nonhuman primates. Here, using nonhuman primates, we found that the autologous transplantation of iPSC-derived neurons elicited only a minimal immune response in the brain.
View Article and Find Full Text PDF