Edible Pongamia Oil (EPO) was evaluated in an acute oral toxicity study, GLP 14-Day and 90-Day repeated dose isocaloric dietary toxicity studies in rats, and in vitro Bacterial Reverse Mutation, and in vivo Mammalian Bone Marrow Chromosome Aberration genotoxicity studies for potential use as a food ingredient. In a non-GLP acute study, an LD > 5000 mg/kg was determined. Subacute 14-day repeated dose dietary administration of 0, 5, 10 and 15% oil revealed no adverse changes in clinical pathology, liver histology, body weight or weight gain, food consumption or food efficiency.
View Article and Find Full Text PDFAlgal strains of Nannochloropsis sp. were developed, optimized, cultivated and harvested to produce a unique composition of algal oil ethyl esters (Algal-EE) that are naturally high in eicosapentaenoic acid (EPA, 23-30%) and palmitoleic acid (20-25%), and contain no docosahexaenoic acid (DHA). Algal-EE was evaluated for mutagenic activity (Ames bacterial reverse mutation, in vitro mammalian chromosome aberration, in vivo micronucleus test) and for acute oral toxicity in Sprague-Dawley rats.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
August 2010
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) are critical for infant and childhood brain development, but levels of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are often low in the Western diet. Increasing evidence from both epidemiological and intervention studies, reviewed here, indicates that DHA supplementation, during pregnancy, lactation, or childhood plays an important role in childhood neurodevelopment. Arachidonic acid (ARA) is also important for infant growth and development.
View Article and Find Full Text PDFPurpose: To model the potential long-term national productivity benefits from reduced daily intake of calories and sodium.
Design: Simulation based on secondary data analysis; quantitative research. Measures include absenteeism, presenteeism, disability, and premature mortality under various hypothetical dietary changes.
Purpose: Model the potential national health benefits and medical savings from reduced daily intake of calories, sodium, and saturated fat among the U.S. adult population.
View Article and Find Full Text PDFOne component of the safety assessment of agricultural products produced through biotechnology is evaluation of the safety of newly expressed proteins. The ILSI International Food Biotechnology Committee has developed a scientifically based two-tiered, weight-of-evidence strategy to assess the safety of novel proteins used in the context of agricultural biotechnology. Recommendations draw upon knowledge of the biological and chemical characteristics of proteins and testing methods for evaluating potential intrinsic hazards of chemicals.
View Article and Find Full Text PDFLow linolenic acid soybean oil (LLSO) has been developed as a substitute for hydrogenated soybean oil to reduce intake of trans FA while improving stability and functionality in processed foods. We assessed the dietary impact of substitution of LLSO for hydrogenated soybean oil (HSBO) used in several food categories. All substitutions were done using an assumption of 100% market penetration.
View Article and Find Full Text PDFThe current procedures to assess the safety of food and feed derived from modern biotechnology include the investigation of possible unintended effects. To improve the probability of detecting unintended effects, profiling techniques such as proteomics are currently tested as complementary analytical tools to the existing safety assessment. An optimized two-dimensional gel electrophoresis (2DE) method was used as a proteomics approach to investigate insertional and pleiotropic effects on the proteome due to genetic engineering.
View Article and Find Full Text PDFProteomics is currently tested as a complementary tool for the safety assessment of genetically modified (GM) crops. Understanding the natural variability of the proteome is crucial for the interpretation of biological differences between transgenic and nontransgenic parental lines. The natural variation of seed protein profiles among a set of 12 Arabidopsis thaliana ecotypes was determined by utilizing two-dimensional electrophoresis (2DE).
View Article and Find Full Text PDFCurrent tools used to assess the safety of food and feed derived from modern biotechnology emphasize the investigation of possible unintended effects caused directly by the expression of transgenes or indirectly by pleiotropy. These tools include extensive multisite and multiyear agronomic evaluations, compositional analyses, animal nutrition, and classical toxicology evaluations. Because analytical technologies are rapidly developing, proteome analysis based on two-dimensional gel electrophoresis (2DE) was investigated as a complementary tool to the existing technologies.
View Article and Find Full Text PDFUnderstanding the impact of genetic diversity on crop biochemical composition is a prerequisite to the interpretation and potential relevance of biochemical differences experimentally observed between genotypes. This is particularly important in the context of comparative safety assessments for crops developed by new technologies such as genetic engineering. To interrogate the natural variability of biochemical composition, grain from seven maize hybrids grown at four geographically distinct sites in Europe was analyzed for levels of proximates (fat, protein, moisture, ash, and carbohydrates), fiber, amino acids, fatty acids, four vitamins, nine minerals, and secondary metabolites.
View Article and Find Full Text PDFInsect-protected corn hybrids containing event MON 863 protect corn plants against feeding damage from corn rootworm (Diabrotica), a major North American insect pest. Corn event MON 863 contains a gene that expresses an amino acid sequence variant of the wild-type Cry3Bb1 insecticidal protein from Bacillus thuringiensis. The purpose of this study was to compare the composition of corn containing event MON 863 with that of conventional nontransgenic corn.
View Article and Find Full Text PDFGlyphosate tolerant wheat MON 71800, simply referred to as MON 71800, contains a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein from Agrobacterium sp. strain CP4 (CP4 EPSPS) that has a reduced affinity for glyphosate as compared to the endogenous plant EPSPS enzyme. The purpose of this work was to evaluate the compositional equivalence of MON 71800 to its nontransgenic parent as well as to conventional wheat varieties.
View Article and Find Full Text PDFTwo 42-d experiments compared the nutritional value of YieldGard Rootworm corn (MON863; experiment 1) and YieldGard Plus corn (MON810 x MON863; experiment 2) to their respective nontransgenic controls and 6 commercial reference corn hybrids when fed to growing broilers. For each experiment, a randomized complete block design was used with 8 dietary treatments in each of 5 replicated blocks of pens. In experiment 1, no differences among diets were observed (P > 0.
View Article and Find Full Text PDFThis 42-day experiment was undertaken to compare the nutritional value of insect-protected corn event MON810 (YieldGard) and YieldGard x herbicide-tolerant corn event GA21 (Roundup Ready) to their nontransgenic controls as well as four different commercial reference corns, when fed to growing Cobb x Cobb broilers. A randomized complete block design was used, and each treatment was replicated with five pens of males and five pens of females with 10 broilers per pen. Broilers were fed approximately 55% wt/wt corn during the first 20 d and approximately 60% wt/wt corn thereafter.
View Article and Find Full Text PDFTwo 42-d experiments compared the nutritional value of the glyphosate-tolerant corn event NK603 (Roundup Ready corn) (experiment 1) and the combined traits, insect-protected corn event MON 810 (YieldGard com) x glyphosate-tolerant corn event NK603 (experiment 2) to their respective non-transgenic controls and to commercial reference corn, when fed to growing broilers. For each experiment, a randomized complete block design was used with eight dietary treatments in each of five replicated blocks of pens (eight pens for males and eight pens for females per block). Final live weights and feed conversion were not different (P > 0.
View Article and Find Full Text PDFThere is a need to assess the safety of foods deriving from genetically modified (GM) crops, including the allergenic potential of novel gene products. Presently, there is no single in vitro or in vivo model that has been validated for the identification or characterization of potential food allergens. Instead, the evaluation focuses on risk factors such as source of the gene (i.
View Article and Find Full Text PDFThe composition of glyphosate-tolerant (Roundup Ready) corn event NK603 was compared with that of conventional corn grown in the United States in 1998 and in the European Union in 1999 to assess compositional equivalence. Grain and forage samples were collected from both replicated and nonreplicated field trials, and compositional analyses were performed to measure proximates, fiber, amino acids, fatty acids, vitamin E, nine minerals, phytic acid, trypsin inhibitor, and secondary metabolites in grain as well as proximates and fiber in forage. Statistical analysis of the data was conducted to assess statistical significance at the p < 0.
View Article and Find Full Text PDFBackground: A principal aim of the safety assessment of genetically modified crops is to prevent the introduction of known or clinically cross-reactive allergens. Current bioinformatic tools and a database of allergens and gliadins were tested for the ability to identify potential allergens by analyzing 6 Bacillus thuringiensis insecticidal proteins, 3 common non-allergenic food proteins and 50 randomly selected corn (Zea mays) proteins.
Methods: Protein sequences were compared to allergens using the FASTA algorithm and by searching for matches of 6, 7 or 8 contiguous identical amino acids.
Petunia (Petunia hybrida) pollen requires flavonols (Fl) to germinate. Adding kaempferol to Fl-deficient pollen causes rapid and synchronous germination and tube outgrowth. We exploited this system to identify genes responsive to Fls and to examine the changes in gene expression that occur during the first 0.
View Article and Find Full Text PDFBackground: Hev b 7 is a Hevea brasiliensis latex allergen with sequence identities of 39% to 42% to patatins recently identified as potato allergens. The complementary DNAs encoding 2 different Hev b 7 isoforms were previously reported.
Objective: The aim of this study was to determine the sequence variation of Hev b 7 and to compare the IgE reactivity of individual isoforms in vitro and in vivo.
The ability of exogenous proteins to cause respiratory and gastrointestinal allergy, and sometimes systemic anaphylactic reactions, is well known. What is not clear however, are the properties that confer on proteins the ability to induce allergic sensitization. With an expansion in the use of enzymes for industrial applications and consumer products, and a substantial and growing investment in the development of transgenic crop plants that express novel proteins introduced from other sources, the issue of protein allergenicity has assumed considerable toxicological significance.
View Article and Find Full Text PDFIn this study we report the cloning, sequence, and characterization of Hor v 9 allergen cDNAs from barley (Hordeum vulgare) pollen. Structural homologues of Kentucky bluegrass (Poa pratensis) group 9 pollen allergens were identified in a cDNA library of barley pollen expressed mRNAs. The Hor v 9 cDNA clone (hvp9742) contained an open reading frame encoding 313 amino acids which included a putative 27-residue signal peptide and one asparagine sequon for glycosylation.
View Article and Find Full Text PDFAn integral part of the safety assessment of genetically modified plants is consideration of possible human health effects, especially food allergy. Prospective testing for allergenicity of proteins obtained from sources with no prior history of causing allergy has been difficult because of the absence of valid methods and models. Food allergens may share physicochemical properties that distinguish them from nonallergens, properties that may be used as a tool to predict the inherent allergenicity of proteins newly introduced into the food supply by genetic engineering.
View Article and Find Full Text PDF