CuBiS thin films are fabricated via spin coating of precursor solutions containing copper and bismuth xanthates onto planar glass substrates or mesoporous metal oxide scaffolds followed by annealing at 300 °C to convert the metal xanthates into copper bismuth sulfide. Detailed insights into the film formation are gained from time-resolved simultaneous small and wide angle X-ray scattering measurements. The CuBiS films show a high absorption coefficient and a band gap of 1.
View Article and Find Full Text PDFA facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds were exploited for the copper-free inverse-electron demand Diels-Alder (iEDDA) "click" reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine.
View Article and Find Full Text PDFHerein, we report the synthesis of a novel, tetrazine-based conjugated polymer. Tetrazines have the benefit of being strong electron acceptors, while little steric hindrance is imposed on the flanking thiophene rings. Conversion of a suitably substituted nitrile precursor led to 3,6-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-1,2,4,5-tetrazine (2OD-TTz).
View Article and Find Full Text PDFBulk heterojunction solar cells based on conjugated polymer donors and fullerene-derivative acceptors have received much attention in the last decade. Alternative acceptors like organic non-fullerene acceptors or inorganic nanocrystals have been investigated to a lesser extent; however, they also show great potential. In this study, one focus is set on the investigation of the growth of copper indium sulfide nanocrystals in a conjugated polymer matrix.
View Article and Find Full Text PDFConventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone.
View Article and Find Full Text PDFAbstract: Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.
View Article and Find Full Text PDFAbstract: Highly fluorescent and photostable (2-alkyl)-1-benzo[]isoquinoline-1,3(2)-diones with a polymerizable norbornene scaffold have been synthesized and polymerized using ring-opening metathesis polymerization. The monomers presented herein could be polymerized in a living fashion, using different comonomers and different monomer ratios. All obtained materials showed good film-forming properties and bright fluorescence caused by the incorporated push-pull chromophores.
View Article and Find Full Text PDFThe feasibility of a one pot approach for conducting mutually orthogonal thiol-Michael addition, copper catalyzed azide-alkyne and inverse electron demand Diels-Alder click chemistry on a tri-functional substrate was demonstrated.
View Article and Find Full Text PDFIn this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy).
View Article and Find Full Text PDFA novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.
View Article and Find Full Text PDFPhotolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks.
View Article and Find Full Text PDFInverse electron demand Diels-Alder additions (iEDDA) between 1,2,4,5-tetrazines and olefins have recently found widespread application as a novel 'click chemistry' scheme and as a mild technique for the modification of materials. Norbornenes are, due to their straightforward synthetic availability, especially interesting in the latter context. Therefore, the reactivity of different norbornene-based compounds was compared with unsubstituted norbornene and other alkenes using UV-vis measurements for the determination of reaction rates under pseudo first order conditions.
View Article and Find Full Text PDFIn this paper, we investigate conjugated polymer layers structured by nanoimprint lithography toward their suitability for the fabrication of nanostructured polymer/metal sulfide hybrid solar cells. Consequently, we first study the thermal stability of the nanoimprinted conjugated polymer layers by means of scanning electron microscopy and grazing incidence small-angle X-ray scattering, which reveals a reasonable thermal stability up to 145 °C and sufficient robustness against the solvent mixture used in the subsequent fabrication process. In the second part, we demonstrate the preparation of nanostructured polymer/copper indium sulfide hybrid solar cells via the infiltration and thermal decomposition of a mixture of copper and indium xanthates.
View Article and Find Full Text PDFInverse electron demand Diels-Alder reactions performed on the double bonds in open cellular macroporous poly(dicyclopentadiene) monoliths yield a high degree of functionalisation (up to 2 mmol pyridazines per g or 8 mmol N per g) with grafted di(pyridyl)pyridazines in a single step.
View Article and Find Full Text PDFInverse electron demand Diels-Alder reactions (iEDDA) between 1,2,4,5-tetrazines and olefins have emerged into a state-of-the art concept for the conjugation of biomolecules. Now, this reaction is also increasingly being applied in polymer science and materials science. The orthogonality of this exciting reaction to other well-established click chemistry schemes, its high reaction speed and its biocompatibility are key features of iEDDA making it a powerful alternative to existing ligation chemistries.
View Article and Find Full Text PDFAbstract: In this paper, the synthesis and characterization of poly(norbornene) homo- and copolymers bearing spiropyran side groups are described. Difficulties in the homopolymerization of spiropyrans due to the opened merocyanine form were observed leading to low polymerization yields for homopolymers while copolymers with 10 mol% spiropyran content were prepared in good yield. Spiropyrans are characterized by their reversible photochromism, which was conserved in the polymers as shown by UV-Vis spectroscopy and FT-IR spectroscopy.
View Article and Find Full Text PDF