The choice of suitable nano- and microstructures of biomaterials is crucial for successful implant integration within the human body. In particular, surface characteristics affect the adsorption of various extra cellular matrix proteins. This work illustrates the interaction of protein adsorption and early cell adhesion on bulk microstructured titanium surfaces with parallel grooves of 27 to 35 μm widths and 15 to 19 μm depths, respectively.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2018
Hydrogels are crosslinked polymeric gels of great interest in the field of tissue engineering, particularly as biocompatible cell or drug carriers. Reagent-free electron irradiated gelatin is simple to manufacture, inexpensive and biocompatible. Here, the potential to micropattern gelatin hydrogel surfaces during electron irradiation crosslinking was demonstrated as a promising microfabrication technique to produce thermally stable structures on highly relevant length scales for bioapplications.
View Article and Find Full Text PDFAs a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability.
View Article and Find Full Text PDFMicrogrooved surfaces have been used extensively to influence cell contact guidance. Guiding cell growth, extracellular matrix deposition, and mineralization is important for bone implant longevity. In this study, we investigated the osteoblast response to microgrooved metallic surfaces in serum-supplemented medium.
View Article and Find Full Text PDF