Publications by authors named "Astrid Van den Eynde"

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15.

View Article and Find Full Text PDF

Background: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies.

View Article and Find Full Text PDF

Despite the recent emergence of immune checkpoint inhibitors, clinical outcomes of metastatic NSCLC patients remain poor, pointing out the unmet need to develop novel therapies to enhance the anti-tumor immune response in NSCLC. In this regard, aberrant expression of the immune checkpoint molecule CD70 has been reported on many cancer types, including NSCLC. In this study, the cytotoxic and immune stimulatory potential of an antibody-based anti-CD70 (aCD70) therapy was explored as single agent and in combination with docetaxel and cisplatin in NSCLC and .

View Article and Find Full Text PDF

The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses.

View Article and Find Full Text PDF

The concept of immunogenic cell death (ICD) has emerged as a cornerstone of therapy-induced anti-tumor immunity. To this end, the following chemotherapies were evaluated for their ability to induce ICD in non-small cell lung cancer (NSCLC) cell lines: docetaxel, carboplatin, cisplatin, oxaliplatin and mafosfamide. The ICD hallmarks ATP, ecto-calreticulin, HMGB1, phagocytosis and maturation status of dendritic cells (DCs) were assessed in vitro.

View Article and Find Full Text PDF