Publications by authors named "Astrid Strunk"

High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world's northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores.

View Article and Find Full Text PDF

The sensitivity of the Northeast Greenland Ice Stream (NEGIS) to prolonged warm periods is largely unknown and geological records documenting such long-term changes are needed to place current observations in perspective. Here we use cosmogenic surface exposure and radiocarbon ages to determine the magnitude of NEGIS margin fluctuations over the last 45 kyr (thousand years). We find that the NEGIS experienced slow early Holocene ice-margin retreat of 30-40 m a, likely as a result of the buttressing effect of sea-ice or shelf-ice.

View Article and Find Full Text PDF

The North Water (NOW) polynya is one of the most productive marine areas of the Arctic and an important breeding area for millions of seabirds. There is, however, little information on the dynamics of the polynya or the bird populations over the long term. Here, we used sediment archives from a lake and peat deposits along the Greenland coast of the NOW polynya to track long-term patterns in the dynamics of the seabird populations.

View Article and Find Full Text PDF

The influence of major Quaternary climatic changes on growth and decay of the Greenland Ice Sheet, and associated erosional impact on the landscapes, is virtually unknown beyond the last deglaciation. Here we quantify exposure and denudation histories in west Greenland by applying a novel Markov-Chain Monte Carlo modelling approach to all available paired cosmogenic Be-Al bedrock data from Greenland. We find that long-term denudation rates in west Greenland range from >50 m Myr in low-lying areas to ∼2 m Myr at high elevations, hereby quantifying systematic variations in denudation rate among different glacial landforms caused by variations in ice thickness across the landscape.

View Article and Find Full Text PDF