Myocardial infarction is a leading cause of death worldwide. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls.
View Article and Find Full Text PDFHeterozygous truncating variants in (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.
View Article and Find Full Text PDFThrombus formation and thromboembolic events play important roles in various cardiovascular pathologies. The key receptor involved in platelet aggregation is the fibrinogen receptor glycoprotein IIb/IIIa. [F]GP1, a derivative of the GPIIb/IIIa antagonist elarofiban, is a specific F-labeled small-molecule radiotracer that binds with high affinity to GPIIb/IIIa receptors of activated platelets.
View Article and Find Full Text PDFA major cause of heart failure is cardiomyopathies, with dilated cardiomyopathy (DCM) as the most common form. Over 40 genes are linked to DCM, among them and . Next Generation Sequencing in clinical DCM cohorts revealed truncating variants in (tv), accounting for up to 25% of familial DCM cases.
View Article and Find Full Text PDFAims: Mechanical unloading by ventricular assist devices (VADs) has become increasingly important for the therapy of end-stage heart failure during the last decade. However, VAD support was claimed to be associated with partial reverse remodelling. Unfortunately, the literature describes the contradictory effects of VAD systems on cardiac fibrosis, a hallmark of cardiac remodelling.
View Article and Find Full Text PDFMutations in RBM20 encoding the RNA-binding motif protein 20 (RBM20) are associated with an early onset and clinically severe forms of cardiomyopathies. Transcriptome analyses revealed RBM20 as an important regulator of cardiac alternative splicing. RBM20 mutations are especially localized in exons 9 and 11 including the highly conserved arginine and serine-rich domain (RS domain).
View Article and Find Full Text PDFArrhythmogenic right ventricular cardiomyopathy is a heritable cardiac disease causing severe ventricular arrhythmias, heart failure and sudden cardiac death. It is mainly caused by mutations in genes encoding several structural proteins of the cardiac desmosomes including the DSG2 gene encoding the desmosomal cadherin desmoglein-2. Although the molecular structure of the extracellular domain of desmoglein-2 is known, it remains an open question, how mutations in DSG2 contribute to the pathogenesis of arrhythmogenic right ventricular cardiomyopathy.
View Article and Find Full Text PDFBackground: The associations between mechanical circulatory support (MCS), acquired von Willebrand syndrome (AvWS), and clinical outcome are incompletely understood.
Methods: In 128 heart failure patients with pulsatile MCS implants (65 total artificial heart or biventricular assist device implants, 63 left ventricular assist device [LVAD] implants) and 76 patients with continuous flow LVAD implants, we analyzed the von Willebrand factor (vWF) profile before (≤24 h) and 17.5 (standard deviation: 5.
Cardiomyopathies might lead to end-stage heart disease with the requirement of drastic treatments like bridging up to transplant or heart transplantation. A not precisely known proportion of these diseases are genetically determined. We genotyped 43 index-patients (30 DCM, 10 ARVC, 3 RCM) with advanced or end stage cardiomyopathy using a gene panel which covered 46 known cardiomyopathy disease genes.
View Article and Find Full Text PDFArrhythmogenic cardiomyopathy (AC) is a hereditary disease leading to sudden cardiac death or heart failure. AC pathology is characterized by cardiomyocyte loss and replacement fibrosis. Our goal was to determine whether cardiomyocytes respond to AC progression by pathological hypertrophy.
View Article and Find Full Text PDFBackground: In terminal failing hearts ventricular assist devices (VAD) are implanted as a bridge to transplantation. Endothelin receptor (ETR) antagonists are used for treatment of secondary pulmonary hypertension in VAD patients. However, the cardiac ETR regulation in human heart failure and during VAD support is incompletely understood.
View Article and Find Full Text PDFAims: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetic condition caused predominantly by mutations within desmosomal genes. The mutation leading to ARVC-5 was recently identified on the island of Newfoundland and caused by the fully penetrant missense mutation p.S358L in TMEM43.
View Article and Find Full Text PDFBackground: Response to catecholamines is blunted in terminal heart failure due to β-receptor downregulation and uncoupling from adenylyl cyclase (AC). Improved myocardial responsiveness to catecholamines after ventricular assist device (VAD) support is associated with upregulation of β1-adrenergic receptors (β1-ARs). Little is known about the regulation of AC and β2-AR coupling after VAD; moreover β2-AR stimulation during VAD was claimed to induce myocardial recovery.
View Article and Find Full Text PDFArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy primarily of the right ventricle characterized through fibrofatty replacement of cardiomyocytes. The genetic etiology in ARVC patients is most commonly caused by dominant inheritance and high genetic heterogeneity. Though histological examinations of ARVC-affected human myocardium reveals fibrolipomatous replacement, the molecular mechanisms leading to loss of cardiomyocytes are largely unknown.
View Article and Find Full Text PDFMechanical unloading by ventricular assist devices (VAD) leads to significant gene expression changes often summarized as reverse remodeling. However, little is known on individual transcriptome changes during VAD support and its relationship to nonfailing hearts (NF). In addition no data are available for the transcriptome regulation during nonpulsatile VAD support.
View Article and Find Full Text PDFCardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium.
View Article and Find Full Text PDFBackground: In this study we analyzed putative biomarkers for myocardial remodeling in plasma from 55 endstage heart failure patients with the need for mechanical circulatory support (MCS). We compared our data to 40 healthy controls and examined if MCS by either ventricular assist devices or total artificial hearts has an impact on plasma concentrations of remodeling biomarkers.
Methods & Results: Plasma biomarkers were analysed pre and 30 days post implantation of a MCS device using commercially available enzyme linked immunosorbent assays (ELISA).
In cardiac fibrosis remodeling of the failing myocardium is associated with a complex reorganization of the extracellular matrix (ECM). Xylosyltransferase I and Xylosyltransferase II (XT-I and XT-II) are the key enzymes in proteoglycan biosynthesis, which are an important fraction of the ECM. XT-I was shown to be a measure for the proteoglycan biosynthesis rate and a biochemical fibrosis marker.
View Article and Find Full Text PDFIn terminal failing hearts, adrenergic receptors are downregulated and intracellular adrenergic signal transduction is inhibited. Mechanical circulatory support by ventricular assist devices (VAD) is used to bridge patients to heart transplantation. Mechanical unloading by VAD may induce reverse remodeling in heart transplantation (HTx) candidates.
View Article and Find Full Text PDFBackground: In heart failure (HF), ventricular myocardium expresses brain natriuretic peptide (BNP). Despite the association of elevated serum levels with poor prognosis, BNP release is considered beneficial because of its antihypertrophic, vasodilating, and diuretic properties. However, there is evidence that BNP-mediated signaling may adversely influence cardiac remodeling, with further impairment of calcium homeostasis.
View Article and Find Full Text PDFBackground: Whether adverse structural changes in the myocardium due to remodelling can be reversed by ventricular assist device (VAD) support in patients with end-stage heart failure is controversial.
Aims: To investigate the effect of VAD support on the extra-cellular matrix.
Methods: We analysed the collagen content in terminal failing ventricles of VAD-patients and donor hearts using 4-hydroxyproline for total collagen and real time RT-PCR for fibronectin (FN), collagen I alpha 1 (Col1A1), III alpha 1 (Col3A1) and TGF beta 1 analysis.
Background: Alterations in the balance of matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) are involved in left ventricular (LV) remodeling. Whether their expression is related to interstitial fibrosis or LV dysfunction in patients with chronic pressure overload-induced LV hypertrophy, however, is unknown.
Methods And Results: Therefore, cardiac biopsies were taken in 36 patients with isolated aortic stenosis (AS) and in 29 control patients without LV hypertrophy.
Background: Chronic heart failure is a multifactorial, progressive disease of many causes and is associated with complex ventricular remodeling. Deposition of extracellular matrix proteins and sarcomeric disarray of the myocytes occur in end-stage heart failure. Ventricular assist devices (VAD), implanted as bridge to transplantation, may reverse ventricular remodeling.
View Article and Find Full Text PDFBackground: Myocardial recovery is observed in some end-stage heart failure patients after mechanical circulatory support. The sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase (Ca2+-ATPase) activity is down-regulated in failing myocardium and contributes to heart failure-associated contraction/relaxation abnormalities. Regulation of Ca(2+)-ATPase after mechanical support was shown to be heterogeneous.
View Article and Find Full Text PDF