Publications by authors named "Astrid Eder"

Lysophosphatidic acid (LPA) is an important intercellular signaling molecule involved in a myriad of biological responses. Elevated concentrations of LPA are present in the ascites and plasma of ovarian cancer patients suggesting a role for LPA in the pathophysiology of ovarian cancer. We have demonstrated previously that oleoyl (18:1) LPA at concentrations present in ascites induces the secretion of urokinase plasminogen activator (uPA) from ovarian cancer cells, possibly linking LPA to cellular invasion.

View Article and Find Full Text PDF

We show that atypical PKCiota, which plays a critical role in the establishment and maintenance of epithelial cell polarity, is genomically amplified and overexpressed in serous epithelial ovarian cancers. Furthermore, PKCiota protein is markedly increased or mislocalized in all serous ovarian cancers. An increased PKCiota DNA copy number is associated with decreased progression-free survival in serous epithelial ovarian cancers.

View Article and Find Full Text PDF

Modulation of the signaling pathways that are aberrant in cancer cells has the potential to provide an effective nontoxic approach to patient management in a broad range of cancers. This quest has taken a major leap forward with the demonstration that STI-571 (imatinib mesylate) induces clinical and molecular remissions in the majority of patients with interferon-refractory chronic myelogenous leukemia and gastrointestinal stromal tumors through inhibition of the Bcr/Abl fusion protein required for the initiation and progression of chronic myelogenous leukemia and inhibition of a mutant, activated c-kit present in gastrointestinal stromal tumors. Support for the concept of targeting products of fusion genes found in specific cancers was first provided by the efficacy of all-trans retinoic acid in acute promyelocytic leukemia where the RARalpha all-trans retinoic acid target is the target of multiple different chromosomal rearrangements.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that exhibits pleiotrophic biological activities, ranging from rapid morphological changes to long-term cellular effects such as induction of gene expression and stimulation of cell proliferation and survival on a wide spectrum of cell types. LPA binds and activates distinct members of the Edg/LP subfamily of G protein-coupled receptors that link to multiple G proteins including Gi, Gq and G12/13 to elicit cellular responses. LPA plays a critical role as a general growth, survival and pro-angiogenic factor, in the regulation of physiological and pathophysiological processes in vivo and in vitro.

View Article and Find Full Text PDF

Objective: One potential limitation of gene therapy for epithelial tumors is the lack of tissue or tumor specificity of treatment. Tumor-selective expression of gene therapies may avoid deleterious side effects and improve the efficacy of the treatment. The aim of this study was to evaluate the tissue and tumor specificity of four different potential gene therapy promoters, to determine their usefulness in tissue-specific gene therapy of epithelial ovarian carcinomas.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA), the simplest of all phospholipids, exhibits pleiomorphic functions in multiple cell lineages. The effects of LPA appear to be mediated by binding of LPA to specific members of the endothelial differentiation gene (Edg) family of G protein-coupled receptors (GPCR). Edg 2, Edg4, and Edg7 are high affinity receptors for LPA, and Edg1 may be a low affinity receptor for LPA.

View Article and Find Full Text PDF