Publications by authors named "Astrid Drenckhan"

Despite continuous improvements in multimodal therapeutic strategies, esophageal carcinoma maintains a high mortality rate. Metastases are a major life-limiting component; however, very little is known about why some tumors have high metastatic potential and others not. In this study, we investigated thermogenic activity and adhesion strength of primary tumor cells and corresponding metastatic cell lines derived from two patients with metastatic adenocarcinoma of the esophagus.

View Article and Find Full Text PDF

The hypoxic tumour microenvironment of solid tumours represents an important starting point for modulating progression and metastatic spread. Carbonic anhydrase IX (CAIX) is a known HIF-1α-dependent key player in maintaining cell pH conditions under hypoxia. We show that CAIX is strongly expressed in esophageal carcinoma tissues.

View Article and Find Full Text PDF

Purpose: Several oxygen-dependent factors, e.g., CAIX (carbonic anhydrase IX) or phosphoglycerate kinase 1 (PGK1) interacting with the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1) have been shown to be involved in processes of tumour pathology including tumourigenicity, tumour cell dissemination and poor survival in several solid tumour entities.

View Article and Find Full Text PDF

Background: Human pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies in the world and despite great efforts in research types of treatment remain limited. A frequently detected alteration in PDACs is a truncated O-linked N-acetylgalactosamine (GalNAc) glycosylation with expression of the Tn antigen. Changes in O-glycosylation affect posttranslationally modified O-GalNAc proteins resulting in profound cellular alterations.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) is involved in pathological processes including tumorgenicity, metastases and poor survival in solid tumors. Twenty-two neuroblastoma samples of patients who were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated immunohistochemically for expression of CAIX. Results were correlated with clinical parameters and outcome.

View Article and Find Full Text PDF

The Hedgehog pathway plays an important role in the pathogenesis of several tumor types, including esophageal cancer. In our study, we show an expression of the ligand Indian hedgehog (Ihh) and its downstream mediator Gli-1 in primary resected adenocarcinoma tissue by immunohistochemistry and quantitative PCR in fifty percent of the cases, while matching healthy esophagus mucosa was negative for both proteins. Moreover, a functionally important regulation of Gli-1 by ErbB2-PI3K-mTORC signaling as well as a Gli-1-dependent regulation of Ihh in the ErbB2 amplified esophageal adenocarcinoma cell line OE19 was observed.

View Article and Find Full Text PDF

Purpose: It has previously been shown that gefitinib-treated patients with epidermal growth factor receptor (EGFR) gene amplification or high polysomy had a statistically significant improvement in response, time to progression, and survival in non-small cell lung cancer (NSCLC). Only few studies utilizing anti-EGFR treatment in advanced esophageal adenocarcinomas have been performed and the results have been heterogeneous. The aim of this study was to evaluate EGFR-targeted therapy with gefitinib in esophageal adenocarcinoma with a high EGFR polysomy.

View Article and Find Full Text PDF

Background And Aim: A close relationship between phosphoglycerate kinase 1 (PGK1) and the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1) has been shown for several cancers. However, the role of PGK1 has not been investigated for neuroblastoma, and PGK1 might be a therapeutic target for this tumor entity. The aim of the current study was to evaluate the role of PGK1 expression in neuroblastoma patients, to determine the impact of PGK1 expression levels on survival, and to correlate PGK1 expression with CXCR4 expression and bone marrow dissemination.

View Article and Find Full Text PDF

Background: In spite of multimodular treatment, the therapeutic options for esophageal carcinoma are limited, and metastases remain the leading cause of tumor-related mortality. Expression of the chemokine receptor CXCR4 significantly correlates with poor survival rates in patients with esophageal carcinoma and is associated with lymph node and bone marrow metastases. The aim of this study was to evaluate the effect of the CXCR4 antagonist CTCE-9908 on metastatic homing and primary tumor growth in vitro and in vivo in an orthotopic xenograft model of esophageal cancer.

View Article and Find Full Text PDF

A functional linkage of the structurally unrelated receptors HER2 and CXCR4 has been suggested for breast cancer but has not been evaluated for esophageal carcinoma. The inhibition of HER2 leads to a reduction of primary tumor growth and metastases in an orthotopic model of esophageal carcinoma. The chemokine receptor CXCR4 has been implicated in metastatic dissemination of various tumors and correlates with poor survival in esophageal carcinoma.

View Article and Find Full Text PDF

Background/aim: The chemokine receptor CXCR4 and its ligand (stromal cell-derived factor-1alpha; SDF-1α) play an important role in tumor cell chemotaxis and metastatic homing of esophageal carcinoma. Several methods are available to examine tumor cell migration in vitro. However, in vivo chemotaxis is subject to complex tumor-host interactions.

View Article and Find Full Text PDF

Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteoglycans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms' Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix.

View Article and Find Full Text PDF