Single-walled carbon nanotubes (SWCNTs) have unique thermal and electrical properties. Coating them with a thin metal layer can provide promising materials for many applications. This study presents a bio-inspired, environmentally friendly technique for CNT metallization using polydopamine (PDA) as an adhesion promoter, followed by electroless plating with nickel.
View Article and Find Full Text PDFHypothesis: Interphase properties in composites, adhesives and protective coatings can be predicted on the basis of interfacial interactions between polymeric precursor molecules and the inorganic surface during network formation. The strength of molecular interactions is expected to determine local segmental mobility (polymer glass transition temperature, Tg) and cure degree.
Experiments: Conventional analysis techniques and atomic force microscopy coupled with infrared (AFM-IR) are applied to nanocomposite specimens to precisely characterise the epoxy-amine/iron oxide interphase, whilst molecular dynamics simulations are applied to identify the molecular interactions underpinning its formation.
Metallization is a common method to produce functional or decorative coatings on plastic surfaces. State-of-the-art technologies require energy-intensive process steps and the use of organic solvents or hazardous substances to achieve sufficient adhesion between the polymer and the metal layer. The present study introduces a facile bio-inspired "green" approach to improve this technology: the use of dopamine, a small-molecule mimic of the main structural component of adhesive mussel proteins, as an adhesion promoter.
View Article and Find Full Text PDFThe response of mixed brushes made of poly(acrylic acid) and poly(2-vinyl pyridine) with a mixing ratio of about 60:40 was studied using atomic force microscopy (AFM) force measurements with colloidal probes and AFM imaging with a sharp tip in the pH range between 2.5 and 8 and at varying KCl concentrations up to 1 M. It was found that under all conditions a dense polyelectrolyte complex layer coexists with excess polyelectrolyte chains in varying swelling states depending on pH and salt concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Hydrogels based on poly(N-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young's moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet-based microfluidics.
View Article and Find Full Text PDFIn previous studies, the authors found that end-grafted layers of the weak polybase poly(2-vinylpyridine) (P2VP) in aqueous solutions do not only swell and collapse if the pH value and salt concentration are varied but also exhibit a pH- and salinity-dependent adhesion to microsized silica spheres. For a better understanding of these effects, in situ force measurements using the AFM colloidal probe technique were applied to end-grafted P2VP layers of different grafting densities in NaCl solutions at pH 2.5.
View Article and Find Full Text PDFThin films with tunable properties are very interesting for potential applications as functional coatings with, for example, anti-icing or improved easy-to-clean properties. A novel "reactive layer stack" approach was developed to create covalently grafted mono- and multilayers of poly(glycidyl methacrylate)/poly(tert-butyl acrylate) diblock copolymers. Because these copolymers contain poly(glycidyl methacrylate) blocks they behave as self-cross-linking materials after creation of acrylic acid functionalities by splitting off the tert-butyl units.
View Article and Find Full Text PDFAFM force measurements have been performed to study the influence of the pH value and salt concentration on the interactions between poly(2-vinyl pyridine) brushes and microsized silica spheres, focusing on attractive and adhesion forces. It was found that the interaction was composed of a repulsive component reflecting the conformation of the brush and an additional attractive force. It can therefore be switched reversibly between purely repulsive at pH 2.
View Article and Find Full Text PDFThe AFM colloidal probe technique was used to measure the interaction between microsized silica spheres and annealed polyelectrolyte brushes made of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) in KCl solutions of various pH values and salt concentrations. The interaction energy showed a distance dependence that was affected strongly by the swelling and the electric properties of the brushes. Between PAA brushes and silica particles, a repulsive interaction has been observed for all pH values and salt concentrations reflecting the swelling of the brush with varying pH value and the transition from osmotic to salted brush regime with increasing KCl concentration.
View Article and Find Full Text PDFThe well-established atomic force microscopy (AFM)-based colloidal probe technique (CPT) and optical tweezers (OT) are combined to measure the interaction forces between blank SiO(2) surfaces in aqueous ionic solutions (CaCl(2)) of varying concentration at pH 7. Spherical colloids (SiO(2), diameter approximately 4.63 +/- 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2006
We studied electric double-layer (EDL) interactions in electrolytes with different valence combinations. Our results show that the interactions are similar for electrolytes with the same co-ion valences and concentrations and such similarity increases with the co-ion valence and surface potential. A scaled surface potential was defined and found to be useful in characterizing the difference in EDL interaction.
View Article and Find Full Text PDF