Publications by authors named "Astrid Alonso Guerrero"

Primary cilia are involved in a variety of physiological processes such as sensing of the environment, cell growth and development. Numerous developmental disorders and pathologies arise from defects in these organelles. Multiple proteins that promote formation and disassembly of the primary cilium have been identified, but little is known about the mechanisms that control steady-state cilium size.

View Article and Find Full Text PDF

Although the large majority of solid tumors show a combination of mitotic spindle defects and chromosomal instability, little is known about the mechanisms that govern the initial steps in tumorigenesis. The recent report of spindle-induced DNA damage provides evidence for a single mechanism responsible for the most prominent genetic defects in chromosomal instability. Spindle-induced DNA damage is brought about by uncorrected merotelic attachments, which cause kinetochore distortion, chromosome breakage at the centromere, and possible activation of DNA damage repair pathways.

View Article and Find Full Text PDF

Most carcinomas present some form of chromosome instability in combination with spindle defects. Numerical instability is likely caused by spindle aberrations, but the origin of breaks and translocations remains elusive. To determine whether one mechanism can bring about both types of instability, we studied the relationship between DNA damage and spindle defects.

View Article and Find Full Text PDF

Synapsis of homologous chromosomes is a key meiotic event, mediated by a large proteinaceous structure termed the synaptonemal complex. Here, we describe a role in meiosis for the murine death-inducer obliterator (Dido) gene. The Dido gene codes for three proteins that recognize trimethylated histone H3 lysine 4 through their amino-terminal plant homeodomain domain.

View Article and Find Full Text PDF

Numerical and/or structural centrosome abnormalities have been correlated with most solid tumors and hematological malignancies. Tumorigenesis also is linked to defects in the mitotic or spindle assembly checkpoint, a key control mechanism that ensures accurate segregation of chromosomes during mitosis. We have reported that targeted disruption of the Dido gene causes a transplantable myelodysplastic/myeloproliferative disease in mice.

View Article and Find Full Text PDF