Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the , a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs.
View Article and Find Full Text PDFObjective: We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature.
Methods: A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing.
The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements.
View Article and Find Full Text PDF