Publications by authors named "Astrid A Prinz"

Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability.

View Article and Find Full Text PDF

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement.

View Article and Find Full Text PDF

Visual search is a complex behavior influenced by many factors. To control for these factors, many studies use highly simplified stimuli. However, the statistics of these stimuli are very different from the statistics of the natural images that the human visual system is optimized by evolution and experience to perceive.

View Article and Find Full Text PDF

We address how feedback to a bursting biological pacemaker with intrinsic variability in cycle length can affect that variability. Specifically, we examine a hybrid circuit constructed of an isolated crab anterior burster (AB)/pyloric dilator (PD) pyloric pacemaker receiving virtual feedback via dynamic clamp. This virtual feedback generates artificial synaptic input to PD with timing determined by adjustable phase response dynamics that mimic average burst intervals generated by the lateral pyloric neuron (LP) in the intact pyloric network.

View Article and Find Full Text PDF

Chondroitin sulfate proteoglycans (CSPGs) are widely studied in vertebrate systems and are known to play a key role in development, plasticity, and regulation of cortical circuitry. The mechanistic details of this role are still elusive, but increasingly central to the investigation is the homeostatic balance between network excitation and inhibition. Studying a simpler neuronal circuit may prove advantageous for discovering the mechanistic details of the cellular effects of CSPGs.

View Article and Find Full Text PDF

Studying ion channel currents generated distally from the recording site is difficult because of artifacts caused by poor space clamp and membrane filtering. A computational model can quantify artifact parameters for correction by simulating the currents only if their exact anatomical location is known. We propose that the same artifacts that confound current recordings can help pinpoint the source of those currents by providing a signature of the neuron's morphology.

View Article and Find Full Text PDF

The intrinsically oscillating neurons in the crustacean pyloric circuit have membrane conductances that influence their spontaneous activity patterns and responses to synaptic activity. The relationship between the magnitudes of these membrane conductances and the response of the oscillating neurons to synaptic input has not yet been fully or systematically explored. We examined this relationship using the phase resetting curve (PRC), which summarizes the change in the cycle period of a neuronal oscillator as a function of the input's timing within the oscillation.

View Article and Find Full Text PDF

A recent study confirms activity-dependent co-regulation of membrane conductances as a mechanism underlying homeostatic regulation of neuronal properties. How multiple cellular and synaptic homeostatic mechanisms interact in a neuronal circuit is best studied with a combination of experimentation and modeling.

View Article and Find Full Text PDF

Background: Rewarding stimuli in associative learning can transform the irregularly and infrequently generated motor patterns underlying motivated behaviors into output for accelerated and stereotyped repetitive action. This transition to compulsive behavioral expression is associated with modified synaptic and membrane properties of central neurons, but establishing the causal relationships between cellular plasticity and motor adaptation has remained a challenge.

Results: We found previously that changes in the intrinsic excitability and electrical synapses of identified neurons in Aplysia's central pattern-generating network for feeding are correlated with a switch to compulsive-like motor output expression induced by in vivo operant conditioning.

View Article and Find Full Text PDF

Central-pattern-generating neural circuits function reliably throughout an animal's life, despite constant molecular turnover and environmental perturbations. Fluctuations in temperature pose a problem to the nervous systems of poikilotherms because their body temperature follows the ambient temperature, thus affecting the temperature-dependent dynamics of various subcellular components that constitute neuronal circuits. In the crustacean stomatogastric nervous system, the pyloric circuit produces a triphasic rhythm comprising the output of the pyloric dilator, lateral pyloric, and pyloric constrictor neurons.

View Article and Find Full Text PDF

Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons.

View Article and Find Full Text PDF

Neuromodulators alter network output and have the potential to destabilize a circuit. The mechanisms maintaining stability in the face of neuromodulation are not well described. Using the pyloric network in the crustacean stomatogastric nervous system, we show that dopamine (DA) does not simply alter circuit output, but activates a closed loop in which DA-induced alterations in circuit output consequently drive a change in an ionic conductance to preserve a conductance ratio and its activity correlate.

View Article and Find Full Text PDF

The temporal precision of a neuron's spiking can be characterized by calculating its "jitter," defined as the standard deviation of the timing of individual spikes in response to repeated presentations of a stimulus. Sub-millisecond jitters have been measured for neurons in a variety of experimental systems and appear to be functionally important in some instances. We have investigated how modifying a neuron's maximal conductances affects jitter using the leaky integrate-and-fire (LIF) model and an eight-conductance Hodgkin-Huxley type (HH8) model.

View Article and Find Full Text PDF

New tools for analysis of oscillatory networks using phase response theory (PRT) under the assumption of pulsatile coupling have been developed steadily since the 1980s, but none have yet allowed for analysis of mixed systems containing nonoscillatory elements. This caveat has excluded the application of PRT to most real systems, which are often mixed. We show that a recently developed tool, the functional phase resetting curve (fPRC), provides a serendipitous benefit: it allows incorporation of nonoscillatory elements into systems of oscillators where PRT can be applied.

View Article and Find Full Text PDF

Here we use computational modeling to gain new insights into the transformation of inputs in hippocampal field CA1. We considered input-output transformation in CA1 principal cells of the rat hippocampus, with activity synchronized by population gamma oscillations. Prior experiments have shown that such synchronization is especially strong for cells within one millimeter of each other.

View Article and Find Full Text PDF

Activity of voltage-gated Na channels (Na(v)) is modified by alternative splicing. However, whether altered splicing of human Na(v)s contributes to epilepsy remains to be conclusively shown. We show here that altered splicing of the Drosophila Na(v) (paralytic, DmNa(v)) contributes to seizure-like behavior in identified seizure mutants.

View Article and Find Full Text PDF

Neuronal networks produce reliable functional output throughout the lifespan of an animal despite ceaseless molecular turnover and a constantly changing environment. Central pattern generators, such as those of the crustacean stomatogastric ganglion (STG), are able to robustly maintain their functionality over a wide range of burst periods. Previous experimental work involving extracellular recordings of the pyloric pattern of the STG has demonstrated that as the burst period varies, the inter-neuronal delays are altered proportionally, resulting in burst phases that are roughly invariant.

View Article and Find Full Text PDF

Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab.

View Article and Find Full Text PDF

Neural circuits rely on slight physiological differences between the component cells for proper function. When any circuit is analyzed, it is important to characterize the features that distinguish one cell type from another. This review describes the methods used to identify the neurons of the crustacean stomatogastric ganglion.

View Article and Find Full Text PDF

The infinitesimal phase response curve (PRC) of a neural oscillator to a weak input is a powerful predictor of network dynamics; however, many networks have strong coupling and require direct measurement of the PRC for strong inputs under the assumption of pulsatile coupling. We incorporate measured noise levels in firing time maps constructed from PRCs to predict phase-locked modes of activity, phase difference, and locking strength in 78 heterogeneous hybrid networks of 2 neurons constructed using the dynamic clamp. We show that noise may either destroy or stabilize a phase-locked mode of activity.

View Article and Find Full Text PDF

Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type.

View Article and Find Full Text PDF
Computational approaches to neuronal network analysis.

Philos Trans R Soc Lond B Biol Sci

August 2010

Computational modelling is an approach to neuronal network analysis that can complement experimental approaches. Construction of useful neuron and network models is often complicated by a variety of factors and unknowns, most notably the considerable variability of cellular and synaptic properties and electrical activity characteristics found even in relatively 'simple' networks of identifiable neurons. This chapter discusses the consequences of biological variability for network modelling and analysis, describes a way to embrace variability through ensemble modelling and summarizes recent findings obtained experimentally and through ensemble modelling.

View Article and Find Full Text PDF

To maintain activity in a functional range, neurons constantly adjust membrane excitability to changing intra- and extracellular conditions. Such activity-dependent homeostatic regulation (ADHR) is critical for normal processing of the nervous system and avoiding pathological conditions. Here, we posed a homeostatic regulation problem for the classical Morris-Lecar (ML) model.

View Article and Find Full Text PDF

In activity-dependent homeostatic regulation (ADHR) of neuronal and network properties, the intracellular Ca(2+) concentration is a good candidate for sensing activity levels because it is correlated with the electrical activity of the cell. Previous ADHR models, developed with abstract activity sensors for model pyloric neurons and networks of the crustacean stomatogastric ganglion, showed that functional activity can be maintained by a regulation mechanism that senses activity levels solely from Ca(2+). At the same time, several intracellular pathways have been discovered for Ca(2+)-dependent regulation of ion channels.

View Article and Find Full Text PDF