Adv Neural Inf Process Syst
December 2022
Deep neural networks (DNNs) are vulnerable to backdoor attacks. Previous works have shown it extremely challenging to unlearn the undesired backdoor behavior from the network, since the entire network can be affected by the backdoor samples. In this paper, we propose a brand-new backdoor defense strategy, which makes it much easier to remove the harmful influence of backdoor samples from the model.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2024
Hypercomplex neural networks have proven to reduce the overall number of parameters while ensuring valuable performance by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this article, we define the parameterization of hypercomplex convolutional layers and introduce the family of parameterized hypercomplex neural networks (PHNNs) that are lightweight and efficient large-scale models.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2022
This paper reviews the novel concept of a controllable variational autoencoder (ControlVAE), discusses its parameter tuning to meet application needs, derives its key analytic properties, and offers useful extensions and applications. ControlVAE is a new variational autoencoder (VAE) framework that combines automatic control theory with the basic VAE to stabilize the KL-divergence of VAE models to a specified value. It leverages a non-linear PI controller, a variant of the proportional-integral-derivative (PID) controller, to dynamically tune the weight of the KL-divergence term in the evidence lower bound (ELBO) using the output KL-divergence as feedback.
View Article and Find Full Text PDFA medical specialty indicates the skills needed by health care providers to conduct key procedures or make critical judgments. However, documentation about specialties may be lacking or inaccurately specified in a health care institution. Thus, we propose to leverage diagnosis histories to recognize medical specialties that exist in practice.
View Article and Find Full Text PDF