Publications by authors named "Aston Liu"

In response to FDA's call for Quality by Design (QbD) in biopharmaceutical product development, the biopharmaceutical industry has been developing highly sensitive and specific technologies in the monitoring and controlling of product quality attributes for bioprocesses. We previously published the successful application of an off-line multi-attribute method (MAM) to monitor more than 20 critical quality attributes (CQA) with superior sensitivity for the upstream process. To further remove the hurdles of laborious process sampling and sample preparation associated with the offline method, we present here a fully integrated MAM based online platform for automated real time online process monitoring.

View Article and Find Full Text PDF

In response to the FDA's call for applying Quality by Design (QbD) to the manufacturing process, the biopharmaceutical industry has invested extensively into the monitoring and controlling of product quality attributes for bioprocesses. To assure the safety and efficacy of the drug product, defining critical quality attributes (CQA) and understanding their correlation with critical process parameters (CPP) becomes vitally important. In this work, a liquid chromatography-mass spectrometry based multi-attribute method (MAM) has been applied to the monitoring and trending of multiple CQAs of a monoclonal antibody product.

View Article and Find Full Text PDF

Polyethyleneimine (PEI) is a flocculent that is widely used in the downstream purification of monoclonal antibodies. It is an in-process residual that is carried through the drug purification process and strongly inhibits residual DNA quantitation by real-time quantitative PCR assay. Very high sample dilutions (e.

View Article and Find Full Text PDF

Heterogeneity of biopharmaceutical products is common due to various co- and post-translational modifications and degradation events that occur during the biological production process and throughout the shelf life. Product-related variants resulting from these modifications potentially affect a product's biological activity and safety, and thus, their detailed structure characterization is of great importance for successful development of protein therapeutics. Specifically, in this study, two novel low-level product variants in a recombinant therapeutic protein were characterized via chromatographic enrichment followed by proteolytic digestion and analysis using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Consistent glycosylation in therapeutic monoclonal antibodies is a major concern in the biopharmaceutical industry as it impacts the drug's safety and efficacy and manufacturing processes. Large numbers of samples are created for the analysis of glycans during various stages of recombinant proteins drug development. Profiling and quantifying protein N-glycosylation is important but extremely challenging due to its microheterogeneity and more importantly the limitations of existing time-consuming sample preparation methods.

View Article and Find Full Text PDF

Glycosylation is a PTM that occurs during production of many protein-based biologic drugs and can have a profound impact on their biological, clinical, and pharmacological properties. Quality by design, process optimization, and advance in manufacturing technology create a demand for robust, sensitive, and accurate profiling and quantification of antibody glycosylation. Potential drawbacks in antibody glycosylation profiling include the high hands-on time required for sample preparation and several hours for data acquisition and analysis.

View Article and Find Full Text PDF

Chemical modifications can potentially induce conformational changes near the modification site and thereby impact the safety and efficacy of protein therapeutics. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a powerful analytical technique with high spatial resolution and sensitivity in detecting such local conformational changes. In this study, we utilized HDX-MS combined with structural modeling to examine the conformational impact on monoclonal antibodies (mAbs) caused by common chemical modifications including methionine (Met) oxidation, aspartic acid (Asp) isomerization, and asparagine (Asn) deamidation.

View Article and Find Full Text PDF

Efforts to develop a subunit vaccine against genital herpes have been hampered by lack of knowledge of the protective antigens of HSV-2, the causative agent of the disease. Vaccines based either on selected antigens or attenuated live virus approaches have not demonstrated meaningful clinical activity. We present here results of a therapeutic vaccine candidate, HerpV (formerly called AG-707), consisting of 32 HSV-2 peptides derived from 22 HSV-2 proteins, complexed non-covalently to the HSP70 chaperone and formulated with QS-21 saponin adjuvant.

View Article and Find Full Text PDF