Magnetic domain walls are information tokens in both logic and memory devices and hold particular interest in applications such as neuromorphic accelerators that combine logic in memory. Here, we show that devices based on the electrical manipulation of magnetic domain walls are capable of implementing linear, as well as programmable nonlinear, functions. Unlike other approaches, domain-wall-based devices are ideal for application to both synaptic weight generators and thresholding in deep neural networks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Perovskite-structured SrTiCoO (STCo) films of varying thicknesses were grown on SrTiO(001) substrates using pulsed laser deposition. Thin films grow with a cube-on-cube epitaxy, but for films exceeding a critical thickness of about 120 nm, a double-epitaxial microstructure was observed, in which (110)-oriented crystals nucleated within the (001)-oriented STCo matrix, both orientations being epitaxial with the substrate. The crystal structure, strain state, and magnetic properties are described as a function of film thickness.
View Article and Find Full Text PDFThe spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive.
View Article and Find Full Text PDFCobalt-substituted SrTiO3 films (SrTi0.70Co0.30O(3-δ)) were grown on SrTiO3 substrates using pulsed laser deposition under oxygen pressures ranging from 1 μTorr to 20 mTorr.
View Article and Find Full Text PDF