Publications by authors named "Aster Escalante"

Within this first part of the two-part series on phage manufacturing, we will give an overview of the process leading to bacteriophages as a drug substance, before covering the formulation into a drug product in the second part. The principal goal is to provide the reader with a comprehensive framework of the challenges and opportunities that present themselves when developing manufacturing processes for bacteriophage-based products. We will examine cell line development for manufacture, upstream and downstream processes, while also covering the additional opportunities that engineered bacteriophages present.

View Article and Find Full Text PDF

Within this second piece of the two-part series of phage manufacturing considerations, we are examining the creation of a drug product from a drug substance in the form of formulation, through to fill-finish. Formulation of a drug product, in the case of bacteriophage products, is often considered only after many choices have been made in the development and manufacture of a drug substance, increasing the final product development timeline and difficulty of achieving necessary performance parameters. As with the preceding review in this sequence, we aim to provide the reader with a framework to be able to consider pharmaceutical development choices for the formulation of a bacteriophage-based drug product.

View Article and Find Full Text PDF

Metrodorea stipularis stem extracts were studied in the search for possible antichagastic, antimalarial, and antitumoral compounds using cruzain from Trypanosoma cruzi, Plasmodium falciparum, and cathepsins B and L, as molecular targets, respectively. Dihydrochalcones 1, 2, 3, and 4 showed significant inhibitory activity against all the targets. Compounds 1-4 displayed IC50 values ranging from 7.

View Article and Find Full Text PDF

Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum.

View Article and Find Full Text PDF