Experience dependent plasticity in the visual cortex is a key paradigm for the study of mechanisms underpinning learning and memory. Despite this, studies involving manipulating visual experience have largely been limited to the primary visual cortex, V1, across various species. Here we investigated the effects of monocular deprivation (MD) on the ocular dominance (OD) and orientation selectivity of neurons in four visual cortical areas in the mouse: the binocular zone of V1 (V1b), the putative "ventral stream" area LM and the putative "dorsal stream" areas AL and PM.
View Article and Find Full Text PDFBackground: Ultrasound-guided regional anaesthesia relies on the visualisation of key landmark, target, and safety structures on ultrasound. However, this can be challenging, particularly for inexperienced practitioners. Artificial intelligence (AI) is increasingly being applied to medical image interpretation, including ultrasound.
View Article and Find Full Text PDFBackground: Ultrasonound is used to identify anatomical structures during regional anaesthesia and to guide needle insertion and injection of local anaesthetic. ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultrasound, Cardiff, UK) is an artificial intelligence-based device that produces a colour overlay on real-time B-mode ultrasound to highlight anatomical structures of interest. We evaluated the accuracy of the artificial-intelligence colour overlay and its perceived influence on risk of adverse events or block failure.
View Article and Find Full Text PDFThe rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1).
View Article and Find Full Text PDFGlaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma.
View Article and Find Full Text PDFOptic nerve (ON) injury is an established model of axonal injury which results in retrograde degeneration and death of retinal ganglion cells as well anterograde loss of transmission and Wallerian degeneration of the injured axons. While the local impact of ON crush has been extensively documented we know comparatively little about the functional changes that occur in higher visual structures such as primary visual cortex (V1). We explored the extent of adult cortical plasticity using ON crush in aged mice.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2017
Dark rearing is known to delay the time course of the critical period for ocular dominance plasticity in the visual cortex. Recent evidence suggests that a period of dark exposure (DE) may enhance or reinstate plasticity even after closure of the critical period, mediated through modification of the excitatory-inhibitory balance and/or removal of structural brakes on plasticity. Here, we investigated the effects of a week of DE on the recovery from a month of monocular deprivation (MD) in the primary visual cortex (V1) of juvenile mice.
View Article and Find Full Text PDF